cart算法python实现:从CART算法中学习如何构建有效的决策树

这篇具有很好参考价值的文章主要介绍了cart算法python实现:从CART算法中学习如何构建有效的决策树。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

CART(Classification and Regression Tree)算法是一种基于树的机器学习算法,用于分类和回归分析。它使用一种叫做分类和回归树(CART)的决策树结构,通过将数据集分割成多个子集来建立模型。

CART(Classification and Regression Tree)算法是一种基于树的机器学习算法,用于分类和回归分析。它使用一种叫做分类和回归树(CART)的决策树结构,通过将数据集分割成多个子集来建立模型。

CART算法的Python实现如下:

# 导入必要的库

import numpy as np

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

# 加载数据集

dataset = datasets.load_iris()

X = dataset.data

y = dataset.target

# 将数据集分割成训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)

# 使用CART算法训练模型

clf = DecisionTreeClassifier(criterion='gini')

clf.fit(X_train, y_train)

# 预测测试集

y_pred = clf.predict(X_test)

# 计算准确率

accuracy = np.sum(y_pred == y_test)/len(y_test)

print('Accuracy: %.2f' % accuracy)文章来源地址https://www.toymoban.com/news/detail-705096.html

到了这里,关于cart算法python实现:从CART算法中学习如何构建有效的决策树的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习之——CART决策树算法

    目录 一、CART决策树算法简介 二、基尼系数 三、决策树的生成 CART(Classification And Regression Trees 分类回归树)算法是一种树构建算法,既可以用于分类任务,又可以用于回归。相比于 ID3 和 C4.5 只能用于 离散型数据 且只能用于分类任务,CART 算法的适用面要广得多,既可用于

    2024年04月13日
    浏览(46)
  • 机器学习之决策树CART算法

    接上期: CART算法是给定输入随机变量X条件下输出随机变量Y的条件概率分布的学习方法。CART假设决策树是二叉树,内部节点取值为“是”或“否”。这样的决策树等价于递归地二分每个特征,将特征空间划分为有限个单元,并在这些单元上确定预测的概率分布即输入给定的

    2024年02月02日
    浏览(40)
  • 第六章.决策树(Decision Tree)—CART算法

    第六章.决策树(Decision Tree) CART决策树的生成就是递归地构建二叉决策树的过程。 CART用基尼(Gini)系数最小化准则来进行特征选择,生成二叉树 。 1).题干: 分别计算它们的Gini系数增益,取Gini系数增益值最大的属性作为决策树的根节点属性。 2).计算 ①. 根节点的Gini系数: ②

    2024年01月17日
    浏览(50)
  • 机器学习---决策树算法(CLS、ID3、CART)

    1. 决策树 决策树(Decision Tree)又称为判定树,是运用于分类的一种树结构。其中的每个内部结点 (internal node)代表对某个属性的一次测试,每条边代表一个测试结果,叶结点(leaf)代表某 个类(class)或者类的分布(class distribution),最上面的结点是根结点。 决策树提供

    2024年02月10日
    浏览(48)
  • (统计学习方法|李航)第五章决策树——四五节:决策树的剪枝,CART算法

    目录 一,决策数的剪枝 二,CART算法 1.CART生成 (1)回归树的生成 (2)分类树的生成          2.CART剪枝 (1)剪枝,形成一个子树序列 (2)在剪枝得到的子树序列T0,T1-----,Tn中通过交叉验证选取最优子树Ta   好的决策树不高不宽     柳建男的”后剪枝“挥手创作   如果

    2024年02月14日
    浏览(45)
  • 决策树--CART分类树

    CART(Classification and Regression Trees)分类树是一种基于决策树的机器学习算法,用于解 决分类问题。它通过构建树状的决策规则来对数据进行分类。 ① 选择一个特征和相应的切分点,将数据集分为两个子集。 ② 对每个子集递归地重复步骤1,直到满足停止条件。 ③ 当达到停

    2024年02月01日
    浏览(42)
  • 吃透《西瓜书》第四章 决策树定义与构造、ID3决策树、C4.5决策树、CART决策树

    目录 一、基本概念 1.1 什么是信息熵? 1.2 决策树的定义与构造 二、决策树算法 2.1 ID3 决策树 2.2 C4.5 决策树 2.3 CART 决策树  信息熵: 熵是 度量样本集合纯度 最常用的一种指标,代表一个系统中蕴含多少信息量, 信息量越大 表明一个 系统不确定性就越大, 就存在越多的可

    2024年02月11日
    浏览(52)
  • 【算法宇宙——在故事中学算法】背包dp之完全背包问题

    学习者不灵丝相传,而自杖明月相反,子来此事却无得失。 尽管计算机是门严谨的学科,但正因为严谨,所以要有趣味才能看得下去。在笔者的前几篇算法类文章中,都采用了以小故事作为引入的方式来介绍算法,但在回看的时候发现学术味还是太浓了,完全没有想看下去的

    2023年04月20日
    浏览(53)
  • 如何从项目中学习

            日常工作中,经常会有这样的错觉,就是明明感觉参与了不少项目,但是好像技术并没有提升太多。         那原因大概率是,平时工作内容是非核心业务,更多是在CRUD的“打螺丝”。无法接触到核心的优质业务、或者参与到架构设计方面来,导致技术成长缓慢

    2024年02月13日
    浏览(39)
  • 5.图论(0x3f:从周赛中学算法 2022下)

    来自0x3f【从周赛中学算法 - 2022 年周赛题目总结(下篇)】:https://leetcode.cn/circle/discuss/WR1MJP/ 周赛中的图论题目比较少,除了下面选的 DFS、BFS、拓扑排序、基环树、二分图判定 等,还有 最短路、DFS 时间戳 等(这些可以在上半年的周赛题目中学到)。 注:偶见于周赛第三题

    2024年02月14日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包