多维时序 | MATLAB实现GWO-BiLSTM灰狼算法优化双向长短期记忆神经网络的多变量时间序列预测

这篇具有很好参考价值的文章主要介绍了多维时序 | MATLAB实现GWO-BiLSTM灰狼算法优化双向长短期记忆神经网络的多变量时间序列预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

多维时序 | MATLAB实现GWO-BiLSTM灰狼算法优化双向长短期记忆神经网络的多变量时间序列预测

预测效果

多维时序 | MATLAB实现GWO-BiLSTM灰狼算法优化双向长短期记忆神经网络的多变量时间序列预测,时间序列,GWO-BiLSTM,灰狼算法优化,双向长短期记忆神经网络,多变量时间序列预测
多维时序 | MATLAB实现GWO-BiLSTM灰狼算法优化双向长短期记忆神经网络的多变量时间序列预测,时间序列,GWO-BiLSTM,灰狼算法优化,双向长短期记忆神经网络,多变量时间序列预测
多维时序 | MATLAB实现GWO-BiLSTM灰狼算法优化双向长短期记忆神经网络的多变量时间序列预测,时间序列,GWO-BiLSTM,灰狼算法优化,双向长短期记忆神经网络,多变量时间序列预测

基本介绍

MATLAB实现GWO-BiLSTM灰狼算法优化双向长短期记忆神经网络的多变量时间序列预测
1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测;
2.GWO-BiLSTMNTS.m为主程序文件,运行即可;
3.命令窗口输出R2、MAE和MBE;
注意程序和数据放在一个文件夹,运行环境为Matlab2021b及以上。

注意程序和数据放在一个文件夹,运行环境为Matlab2021b及以上。

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2(资源处下载):MATLAB实现GWO-BiLSTM灰狼算法优化双向长短期记忆神经网络的多变量时间序列预测获取。
 
        
        dropoutLayer(0.25,'Name','drop2')
        % 全连接层
        fullyConnectedLayer(numResponses,'Name','fc')
        regressionLayer('Name','output')    ];

    layers = layerGraph(layers);
    layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 训练选项
if gpuDeviceCount>0
    mydevice = 'gpu';
else
    mydevice = 'cpu';
end
    options = trainingOptions('adam', ...
        'MaxEpochs',MaxEpochs, ...
        'MiniBatchSize',MiniBatchSize, ...
        'GradientThreshold',1, ...
        'InitialLearnRate',learningrate, ...
        'LearnRateSchedule','piecewise', ...
        'LearnRateDropPeriod',56, ...
        'LearnRateDropFactor',0.25, ...
        'L2Regularization',1e-3,...
        'GradientDecayFactor',0.95,...
        'Verbose',false, ...
        'Shuffle',"every-epoch",...
        'ExecutionEnvironment',mydevice,...
        'Plots','training-progress');
%% 模型训练
rng(0);
net = trainNetwork(XrTrain,YrTrain,layers,options);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试数据预测
% 测试集预测
YPred = predict(net,XrTest,"ExecutionEnvironment",mydevice,"MiniBatchSize",numFeatures);
YPred = YPred';
% 数据反归一化
YPred = sig.*YPred + mu;
YTest = sig.*YTest + mu;
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501文章来源地址https://www.toymoban.com/news/detail-705129.html

到了这里,关于多维时序 | MATLAB实现GWO-BiLSTM灰狼算法优化双向长短期记忆神经网络的多变量时间序列预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包