Direct3D光照

这篇具有很好参考价值的文章主要介绍了Direct3D光照。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

光照的组成

环境光:这种类型的光经其他表面反射到达物体表面,并照亮整个场景,要想以较低代价粗略模拟这类反射光,环境光是一个很好的选择

漫射光:这种类型光沿着特定的方向传播。当它到达某一表面时,将沿着各个方向均匀反射,无论从哪个方位观察,表面亮度均相同,所以采用该模型时无须考虑观察者的位置,这样,漫射光方程中仅需考虑光传播的方向以及表面朝向,从一个光源发出的光一般都是这种类型的。

镜面光:这种类型的光沿特定方向传播,当此类光到达一个表面时,将严格地沿着另一个方向反射,从而形成只能在一定角度范围内才能观察到的高亮度照射,所以在镜面光照方程中不仅需要考虑光线的入射方向和图元的表面朝向,还需要考虑观察点的位置。镜面光可用于模拟物体上的高光点,例如当光线照射到一个抛光的表面所形成的高亮照射。

镜面光比其他类型光计算量大,因此Direct3D提供了开关选项,默认状态下Direct不进行镜面反射计算,如果想启用镜面光,必须调用接口进行设置

Device->SetRenderState(D3DRS_SPECULARENABLE, true);

每种类型的光都可用结构D3DCOLORVALUE或者D3DXCOLOR来表示,描述光线的颜色时,D3DXCOLOR类中的Alpha值都将被忽略

D3DXCOLOR redAmbient(1.0f, 0.0f, 0.0f, 1.0f);
D3DXCOLOR blueDiffuse(0.0f, 0.0f, 1.0f, 1.0f);
D3DXCOLOR whiteSpecular(1.0f, 1.0f, 1.0f, 1.0f);

材质

现实世界中,我们所观察到的物体的颜色是由该物体所反射的光的颜色决定的,例如一个纯红色的球体反射了全部的红色入射光,并吸收了所有非红色的光,所以呈现为红色。当一个物体吸收了所有的光时,便呈现为黑色,如果一个物体能够100%地反射红色光、绿色光、蓝色光,它将呈现为白色,Direct3D通过定义物体的材质来模拟同样的现象,材质允许我们定义物体表面对各种颜色光的反射比例,材质用结构D3DMATERIAL9来表示。

typedef struct D3DMATERIAL9 {
    D3DCOLORVALUE   Diffuse;  
    D3DCOLORVALUE   Ambient;  
    D3DCOLORVALUE   Specular; 
    D3DCOLORVALUE   Emissive; 
    float           Power;    
} D3DMATERIAL9;

Diffuse:指定材质对漫射光的反着率
Ambient:指定材质对环境光的反射率
Specular:指定材质对镜面光的反射率
Emissive:该分量用于增强物体的亮度,使之看起来好像可以自己发光
Power:指定镜面高光点的锐度,该值越大,高光点的锐度越大

//只反射红色光
D3DMATERIAL9 red;
::ZeroMemory(&red, sizeof(red));
red.Diffuse = D3DXCOLOR(1.0f, 0.0f, 0.0f, 1.0f);
red.Ambient= D3DXCOLOR(1.0f, 0.0f, 0.0f, 1.0f);
red.Specular = D3DXCOLOR(1.0f, 0.0f, 0.0f, 1.0f);
red.Emissive = D3DXCOLOR(0.0f, 0.0f, 0.0f, 1.0f);
red.Power = 5.0f;

设置材质接口SetMaterial

D3DMATERIAL9 blueMaterial;
Device->SetMaterial(&blueMaterial);
//draw...

顶点法线

顶点法线描述的是构成多边形的各个顶点的法线,Direct3D需要知道顶点的法线方向,以确定光线到达表面时的入射角,由于光照计算是对每个顶点进行的,所以Direct3D需要知道表面在每个顶点处的局部朝向(法线方向),描述一个顶点法线需要修改顶点结构

struct Vertex
{
	float _x, _y, _z;
	float _nx, _ny, _nz;
	static const DWORD FVF;
};
const DWORD Vertex::FVF = D3DFVF_XYZ | D3DFVF_NORMAL;

计算三角形三个顶点的法线,可由计算该面的法向量得到,首先计算位于三角形平面内的俩个向量

void ComputeNormal(D3DXVECTOR3* p0, D3DXVECTOR3* p1, D3DXVECTOR3* p2, D3DXVECTOR3* out)
{
	D3DXVECTOR3 u = *p1 - *p0;
	D3DXVECTOR3 v = *p2 - *p0;
	D3DXVec3Cross(out, &u, &v);
	D3DXVec3Normalize(out, out);
}

当用三角形单元逼近表示曲面时,将面片法向量作为构成该面片的顶点法向量不可能产生很平滑的效果,一种更好的求取顶点法向量的方法是计算法向量均值,我们需要求出共享点v的所有三角形的面法向量,然后将这些法向量相加后除以个数进行平均。

在变换过程中,顶点法线有可能不再是规范的所以最好的方法是在变换完成后,通过设置绘制状态来重新规范化

Device->SetRenderState(D3DRS_NORMALIZENORMALS, true);

光源

Direct3D支持3种类型的光源,分别是点光源、方向光、聚光灯

点光源:该光源在世界坐标系中有固定的位置,并向所有的方向发射光线(D3DLIGHT_POINT)
方向光:该光源没有位置信息,所发射的光线相互平行地沿某一特定方向传播(D3DLIGHT_DIRECTIONAL)
聚光灯:这种类型的光源与手电筒类似,该光源有位置信息,其发射的光线呈锥形沿着特定方向传播(D3DLIGHT_SPOT)

Direct3D光照,3d学习,3d

typedef struct D3DLIGHT9 {
    D3DLIGHTTYPE    Type;        
    D3DCOLORVALUE   Diffuse;     
    D3DCOLORVALUE   Specular;    
    D3DCOLORVALUE   Ambient;     
    D3DVECTOR       Position;    
    D3DVECTOR       Direction;   
    float           Range;       
    float           Falloff;     
    float           Attenuation0;
    float           Attenuation1;
    float           Attenuation2;
    float           Theta;       
    float           Phi;         
} D3DLIGHT9;

Type:定义创建的光源类型,可取以下3种枚举值,D3DLIGHT_POINTD3DLIGHT_SPOTD3DLIGHT_DIRECTIONAL
Diffuse:该光源所发出的漫射光的颜色
Specular:该光源所发出的镜面光的颜色
Ambient:该光源所发出的环境光的颜色
Position:用于描述光源在世界坐标系中位置的向量,对于方向光该参数无意义
Direction:一个描述光在世界坐标系中传播方向的向量,对于点光源该参数无意思
Range:光线"消亡"前,所能到达的最大光程,该值的最大取值为,对于方向光该参数无意义
Falloff:该值用于聚光灯,该参数定义了光强从内锥形到外锥形的衰减方式,该参数一版取为1.0f
Attenuation0Attenuation1Attenuation2这些衰减变量定义了光强随距离衰减的方式,这些变量仅用于点光源和聚光灯,分别表示光的常量、线性、2次距离衰减系数,衰减公式为Direct3D光照,3d学习,3d,其中D为光源到顶点的距离。
Theta:仅用于聚光灯,指定了内部锥形的圆锥角,单位为弧度
Phi:仅用于聚光灯,指定了外部锥形的圆锥角,单位为弧度

与D3DMATERIAL9结构初始化类似,当需要一个简单的光源时,D3DLIGHT9结构的初始化也很繁琐

D3DLIGHT9 d3d::InitDirectionalLight(D3DXVECTOR3* direction, D3DXCOLOR* color)
{
	D3DLIGHT9 light;
	::ZeroMemory(&light, sizeof(light));
	light.Type = D3DLIGHT_DIRECTIONAL;
	light.Ambient = *color * 0.4f;
	light.Diffuse = *color;
	light.Specular = *color * 0.6f;
	light.Direction = *direction;
	return light;
}

D3DXVECTOR3 dir(1.0f, 0.0f, 0.0f);
D3DXCOLOR c = d3d::WHITE;
D3DLIGHT9 dirLight = d3d::InitDirectionalLight(&dir, &c);

D3DLIGHT9实例初始化完毕之后,我们需要在Direct3D所维护的一个光源内部列表中对所要使用的光源进行注册,注册成功后就可以对其开关状态进行控制文章来源地址https://www.toymoban.com/news/detail-705166.html

Device->SetLight(0, &light);
Device->LightEnable(0, true);

光照例程

bool SetUpPyramid()
{
	//启用光照(默认是启用的)
	Device->SetRenderState(D3DRS_LIGHTING, true);

	Device->CreateVertexBuffer(12 * sizeof(PyramidVertex), D3DUSAGE_WRITEONLY, PyramidVertex::FVF, D3DPOOL_MANAGED, &Pyramid, 0);

	PyramidVertex* v;
	Pyramid->Lock(0, 0, (void**)&v, 0);

	v[0] = PyramidVertex(-1.0f, 0.0f, -1.0f, 0.0f, 0.707f, -0.707f);
	v[1] = PyramidVertex(0.0f, 1.0f, 0.0f, 0.0f, 0.707f, -0.707f);
	v[2] = PyramidVertex(1.0f, 0.0f, -1.0f, 0.0f, 0.707f, -0.707f);

	v[3] = PyramidVertex(-1.0f, 0.0f, 1.0f, -0.707f, 0.707f, 0.0f);
	v[4] = PyramidVertex(0.0f, 1.0f, 0.0f, -0.707f, 0.707f, 0.0f);
	v[5] = PyramidVertex(-1.0f, 0.0f, -1.0f, -0.707f, 0.707f, 0.0f);

	v[6] = PyramidVertex(1.0f, 0.0f, -1.0f, 0.707f, 0.707f, 0.0f);
	v[7] = PyramidVertex(0.0f, 1.0f, 0.0f, 0.707f, 0.707f, 0.0f);
	v[8] = PyramidVertex(1.0f, 0.0f, 1.0f, 0.707f, 0.707f, 0.0f);

	v[9] = PyramidVertex(1.0f, 0.0f, 1.0f, 0.0f, 0.707f, 0.707f);
	v[10] = PyramidVertex(0.0f, 1.0f, 0.0f, 0.0f, 0.707f, 0.707f);
	v[11] = PyramidVertex(-1.0f, 0.0f, 1.0f, 0.0f, 0.707f, 0.707f);
	Pyramid->Unlock();

	D3DMATERIAL9 mtrl;
	mtrl.Ambient = d3d::WHITE;
	mtrl.Diffuse = d3d::WHITE;
	mtrl.Specular= d3d::WHITE;
	mtrl.Emissive = d3d::BLACK;
	mtrl.Power = 5.0f;
	Device->SetMaterial(&mtrl);

	D3DLIGHT9 dir;
	::ZeroMemory(&dir, sizeof(dir));
	dir.Type = D3DLIGHT_DIRECTIONAL;
	dir.Diffuse = d3d::WHITE;
	dir.Specular = d3d::WHITE * 0.3f;
	dir.Ambient = d3d::WHITE * 0.6f;
	dir.Direction = D3DXVECTOR3(1.0f, 0.0f, 0.0f);
	Device->SetLight(0, &dir);
	Device->LightEnable(0, true);

	//规范化法向量
	Device->SetRenderState(D3DRS_NORMALIZENORMALS, true);
	//启用镜面高光
	Device->SetRenderState(D3DRS_SPECULARENABLE, true);

	//取景变换(观察者坐标系)
	D3DXVECTOR3 position(3.0f, 2.0f, -3.0f);
	D3DXVECTOR3 target(0.0f, 0.0f, 0.0f);
	D3DXVECTOR3 up(0.0f, 1.0f, 0.0f);
	D3DXMATRIX V;
	D3DXMatrixLookAtLH(&V, &position, &target, &up);
	Device->SetTransform(D3DTS_VIEW, &V);
	
	//投影变换
	D3DXMATRIX proj;
	D3DXMatrixPerspectiveFovLH(&proj, D3DX_PI*0.5f, (float)Width / (float)Height, 1.0f, 1000.0f);
	Device->SetTransform(D3DTS_PROJECTION, &proj);
	return true;
}

到了这里,关于Direct3D光照的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Direct3D 12——模板——平面镜效果

    1.将实物照常渲染到后台缓冲区内(不包括镜子)。注意,此步骤不修改模 板缓冲区。 2.清理模板缓冲区,将其整体置零。 将实物都绘制到后台缓冲区中,并将模板缓冲区清理为0 (用浅灰色来表示)。 绘制在模板缓冲区中的黑色轮廊线条反映的是:后台缓冲区与模板缓冲区

    2023年04月21日
    浏览(29)
  • Character Animation With Direct3D 读书笔记

    2D动画:循环播放多张图片 3D动画: 骨骼动画、变形动画 Win32 应用程序 Application类:处理主程序循环,图形设备的初始化 Init:加载资源并创建图形设备 Update:更新游戏世界,移动对象,更新物理引擎 Render:渲染所有对象,并将结果呈现给屏幕 Quit Cleanup DirectX 渲染循环:

    2024年02月12日
    浏览(30)
  • d3d12龙书阅读----Direct3D的初始化

    使用d3d我们可以对gpu进行控制与编程,以硬件加速的方式来完成3d场景的渲染,d3d层与硬件驱动会将相应的代码转换成gpu可以执行的机器指令,与之前的版本相比,d3d12大大减少了cpu的开销,同时也改进了对多线程的支持,但是使用的api也更加复杂。 接下来,我们将先介绍在

    2024年03月12日
    浏览(35)
  • 三维引擎基础概述(Direct3D、OpenGL、UE、U3D、threejs等)

    一般而言,三维引擎是在三维底层图形技术的基础上,封装硬件操作与三维图形算法,形成普遍意义上的三维交互引擎,提供给开发者一个简单易用、功能丰富的三维图形环境,在此基础上进行虚拟现实、三维交互、可视化管理平台二次开发等,极大提高开发效率。 【底层图

    2024年02月11日
    浏览(34)
  • web3D三维引擎(Direct3D、OpenGL、UE、U3D、threejs)基础扫盲

    三维引擎是指用于创建和渲染三维图形的软件框架。它们通常提供了图形处理、物理模拟、光照、碰撞检测等功能,帮助开发者构建逼真的三维场景和交互体验。在这里,我将为您详细介绍一些常见的三维引擎,包括Direct3D、OpenGL、Unreal Engine、Unity3D和Three.js。 Direct3D是由微软

    2024年02月11日
    浏览(46)
  • DirectX12_Windows_GameDevelop_3:Direct3D的初始化

    查看龙书时发现, 第四章介绍预备知识的代码不太利于学习 。因为它不像是LearnOpenGL那样从头开始一步一步教你敲代码,导致你没有一种整体感。 如果你把它当作某一块的代码进行学习,你跟着敲会发现,总有几个变量是没有定义的。这是因为书上的代码都是把框架里的某

    2024年02月08日
    浏览(31)
  • 【C/C++】使用C++和Direct3D (d3d)获取屏幕截图并根据传入分辨率进行缩放图片大小

    目录 一,函数清单 1.Direct3DCreate9 函数 2.IDirect3D9::CreateDevice 方法 3.IDirect3DDevice9::GetDisplayMode 方法 4.IDirect3DDevice9::CreateOffscreenPlainSurface 方法 5.IDirect3DDevice9::GetFrontBufferData 方法 6.IDirect3DDevice9::D3DXLoadSurfaceFromSurface 方法 7. D3DXSaveSurfaceToFile 函数 二,关键代码实现 三,最终实现

    2024年01月18日
    浏览(36)
  • 在direct3D中,透明度处理和D2D1_ALPHA_MODE_PREMULTIPLIED含义?

    D2D1_ALPHA_MODE_PREMULTIPLIED 是 Direct2D 中定义的一种 Alpha 模式,用于描述像素颜色值和其 Alpha 通道(透明度)之间的关系。 在非预乘 Alpha (Straight or Unpremultiplied Alpha) 图像中,每个颜色分量(红、绿、蓝)是独立于 Alpha 值的。而在预乘 Alpha 图像中,每个颜色分量已经被其对应的

    2024年01月25日
    浏览(36)
  • direct3d-msaa-抗锯齿算法-教程-涉及概念解析

    交换链(Swap Chain)在计算机图形学和窗口系统中是一个核心概念,它主要用于管理一组缓冲区(通常是帧缓冲区),这些缓冲区用于存储渲染的图像,并且有序地与屏幕显示进行交替更新。 窗口系统中的交换链: 在Windows、Linux等操作系统上的窗口环境中,交换链与图形API(

    2024年01月24日
    浏览(33)
  • 【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间)

    上篇我们介绍了PRT,并以Diffuse的BRDF作为例子分析了预计算的部分,包括Lighting和Light transport,如上图所示。 包括我们还提到了SH,可以用SH的有限阶近似拟合球面函数,然后计算。 这里和上篇的推导方式不太一样,我们上篇是把Lighting项用SH分解然后交换积分和求和符号,最

    2024年02月10日
    浏览(32)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包