每天清晨,当第一缕阳光洒在湖面上,一个身影便会出现在湖心小岛上。她坐在一块大石头上,周围被茂盛的植物环绕,安静地沉浸在数学的世界中。
这个姑娘叫小悦,她的故事在这个美丽的湖心小岛上展开。每天早晨,她都会提前来到湖边,仔细观察水下的植物,然后抽出时间来钻研一元x次方程。她身上的气息混合着湖水的清新和植物的芬芳,形成一种独特的味道,让人感到宁静与祥和。
然而,一元x次方程的展开对于小悦来说,并不是一件容易的事。这个看似简单的数学问题,却困扰了她许久。然而,小悦并没有向困难低头,她坚信,只要努力,就一定能够找到解决的方法。
在这座小岛上,小悦度过了无数个早晨。她反复琢磨着方程的特点,尝试寻找解法。有时候,她会陷入深深的思考,甚至忘记时间;有时候,她会突然灵光一闪,兴奋地写下展开式的公式。每一个早晨,小悦都在进步,她的眼中闪耀着对知识的渴望和对梦想的坚定。
终于有一天,通过前面的积累,小悦灵光一闪,意识到她可以通过将一元x次方程的每一项分别展开,然后再将这些展开式合并起来,得到一元x次方程的展开式。于是她拿起笔和纸,开始耐心地展开每一项。首先,她展开了一元x次方程中的常数项,接着展开了一次项、二次项、三次项……,最后将所有展开式合并起来,得到了一元x次方程的展开式。小悦看着自己长期努力得来的成果,激动得热泪盈眶。
她无法掩饰内心的喜悦,兴奋地在湖边跳跃着。湖面上的波纹在阳光的照射下闪着金光,似乎在为她的成功欢呼。那一刻,小悦觉得自己仿佛成为了湖水的一部分,与周围的环境融为一体。
随着时间的推移,小悦在岛上的生活也变得更加丰富多彩。她开始尝试将数学知识应用到日常生活中,在烹饪时运用几何学来切蛋糕,或者在散步时用代数知识来计算最短路径问题。这些小小的尝试让小悦意识到,知识不仅仅是为了考试和学术,它更是一种工具,可以帮助她更好地生活。
这个美丽的湖心小岛成为了小悦成长的见证。她在知识的海洋中探索,用数学来解读自然界的奥秘。清晨的阳光照耀在她的书桌上,给她带来温暖和勇气。傍晚时分,当夕阳洒在湖面上,小悦坐在窗前,静静地看着湖面的金辉渐渐消失在暮色中。
小悦面临的一元多次方程的展开式问题如下,她是如何处理呢:
输入一个带有一个单字符变量的表达式,并将其展开。表达式的形式为(ax+b)^n,其中a和b是整数,可以是正的,也可以是负的,x是任何单字符变量,n是自然数。如果a=1,则变量前面不会放置任何系数。如果a=-1,则变量前面将放一个“-”。
展开后的表达式应以字符串形式返回,格式为ax^b+cx^d+ex^f。。。其中a、c和e是项的系数,x是原始表达式中传递的原始一个字符变量,b、d和f是每个项中x的幂,并且是递减的。
如果项的系数为零,则不应包括该项。如果一个项的系数为1,则不应包括该系数。如果项的系数为-1,则只应包含“-”。如果项的幂为0,则只应包括系数。如果项的幂为1,则应排除插入符号和幂。
示例:
EdmSolution.Expand("(x+1)^2"); // returns "x^2+2x+1"
EdmSolution.Expand("(p-1)^3"); // returns "p^3-3p^2+3p-1"
EdmSolution.Expand("(2f+4)^6"); // returns "64f^6+768f^5+3840f^4+10240f^3+15360f^2+12288f+4096"
EdmSolution.Expand("(-2a-4)^0"); // returns "1"
EdmSolution.Expand("(-12t+43)^2"); // returns "144t^2-1032t+1849"
EdmSolution.Expand("(r+0)^203"); // returns "r^203"
EdmSolution.Expand("(-x-1)^2"); // returns "x^2+2x+1"
算法实现:
1 public class EdmSolution 2 { 3 // 定义一个只读的静态正则表达式对象,用于匹配表达式的模式 4 private readonly static Regex pattern = new Regex(@"^\((-?\d*)(.)([-+]\d+)\)\^(\d+)$", RegexOptions.Compiled); 5 6 // 定义一个静态方法,用于展开给定的表达式 7 public static string Expand(string expr) 8 { 9 // 使用正则表达式匹配给定的表达式,并将匹配结果转换为字符串数组 10 var matches = pattern.Matches(expr).Cast<Match>().First().Groups.Cast<Group>().Skip(1).Select(g => g.Value).ToArray(); 11 12 // 解析匹配结果中的各个分组,并赋值给对应的变量 13 var a = matches[0].Length == 0 ? 1 : matches[0] == "-" ? -1 : int.Parse(matches[0]); 14 var x = matches[1]; 15 var b = int.Parse(matches[2]); 16 var n = int.Parse(matches[3]); 17 18 // 计算系数f的初始值,使用BigInteger类处理大整数 19 var f = new BigInteger(Math.Pow(a, n)); 20 21 // 根据系数f的值确定常数c的值 22 var c = f == -1 ? "-" : f == 1 ? "" : f.ToString(); 23 24 // 处理特殊情况:指数为0或常数为0的情况 25 if (n == 0) return "1"; 26 if (b == 0) return $"{c}{x}{(n > 1) ? "^" : ""}{n}"; 27 28 // 创建一个StringBuilder对象,用于存储展开后的表达式 29 var res = new StringBuilder(); 30 31 // 循环展开表达式的每一项 32 for (var i = 0; i <= n; i++) 33 { 34 // 根据系数f的符号和当前项的位置,添加"+"或"-"符号 35 if (f > 0 && i > 0) res.Append("+"); 36 if (f < 0) res.Append("-"); 37 38 // 添加系数的绝对值,如果系数大于1或当前项不是第一项 39 if (i > 0 || f * f > 1) res.Append($"{BigInteger.Abs(f)}"); 40 41 // 添加变量x,如果当前项不是最后一项 42 if (i < n) res.Append(x); 43 44 // 添加指数符号和指数值,如果当前项不是倒数第二项 45 if (i < n - 1) res.Append($"^{n - i}"); 46 47 // 更新系数f的值 48 f = f * (n - i) * b / a / (i + 1); 49 } 50 51 // 将StringBuilder对象转换为字符串,并返回展开后的表达式 52 return res.ToString(); 53 } 54 }
算法运行步骤:EdmSolution.Expand("(-5m+3)^4")
1. 匹配表达式:(-5m+3)^4
2. 使用正则表达式匹配给定的表达式,得到匹配结果:
- matches[0] = "-5"
- matches[1] = "m"
- matches[2] = "+3"
- matches[3] = "4"
3. 解析匹配结果中的各个分组:
- a = -5
- x = "m"
- b = 3
- n = 4
4. 计算系数f的初始值:f = (-5)^4 = 625
5. 根据系数f的值确定常数c的值:c = ""
6. 检查特殊情况:n = 4,不为0;b = 3,不为0
7. 创建StringBuilder对象res,用于存储展开后的表达式
8. 开始循环展开表达式的每一项:
- 第一项:i = 0
- f > 0,不添加"+"符号
- f * f > 1,添加系数的绝对值:625
- i < n,添加变量x:"m"
- i < n - 1,添加指数符号和指数值:"^4"
- 更新系数f的值:f = 625 * (4 - 0) * 3 / -5 / (0 + 1) = -1500
- 第二项:i = 1
- f < 0,添加"-"符号
- f * f > 1,添加系数的绝对值:1500
- i < n,添加变量x:"m"
- i < n - 1,添加指数符号和指数值:"^3"
- 更新系数f的值:f = -1500 * (4 - 1) * 3 / -5 / (1 + 1) = 1350
- 第三项:i = 2
- f < 0,添加"-"符号
- f * f > 1,添加系数的绝对值:1350
- i < n,添加变量x:"m"
- i < n - 1,添加指数符号和指数值:"^2"
- 更新系数f的值:f = 1350 * (4 - 2) * 3 / -5 / (2 + 1) = -540
- 第四项:i = 3
- f < 0,添加"-"符号
- f * f > 1,添加系数的绝对值:540
- i < n,添加变量x:"m"
- i < n - 1,不添加指数符号和指数值
- 更新系数f的值:f = 540 * (4 - 3) * 3 / -5 / (3 + 1) = 81
- 第五项:i = 4
- f < 0,添加"-"符号
- f * f > 1,添加系数的绝对值:81
- i < n,不添加变量x
- i < n - 1,不添加指数符号和指数值
- 更新系数f的值:f = 81 * (4 - 4) * 3 / -5 / (4 + 1) = 0
9. 循环结束,返回StringBuilder对象res转换后的字符串:"625m^4-1500m^3+1350m^2-540m+81"
10. 断言结果与期望值相等,测试通过
测试用例:文章来源:https://www.toymoban.com/news/detail-705739.html
1 namespace Solution 2 { 3 using NUnit.Framework; 4 using System; 5 using System.Collections.Generic; 6 using System.Text; 7 using System.Text.RegularExpressions; 8 9 [TestFixture] 10 public class SolutionTest 11 { 12 [Test] 13 public void testBPositive() 14 { 15 Assert.AreEqual("1", EdmSolution.Expand("(x+1)^0")); 16 Assert.AreEqual("x+1", EdmSolution.Expand("(x+1)^1")); 17 Assert.AreEqual("x^2+2x+1", EdmSolution.Expand("(x+1)^2")); 18 Assert.AreEqual("x^3+3x^2+3x+1", EdmSolution.Expand("(x+1)^3")); 19 Assert.AreEqual("x^4+4x^3+6x^2+4x+1", EdmSolution.Expand("(x+1)^4")); 20 Assert.AreEqual("x^5+5x^4+10x^3+10x^2+5x+1", EdmSolution.Expand("(x+1)^5")); 21 Assert.AreEqual("1", EdmSolution.Expand("(x+2)^0")); 22 Assert.AreEqual("x+2", EdmSolution.Expand("(x+2)^1")); 23 Assert.AreEqual("x^2+4x+4", EdmSolution.Expand("(x+2)^2")); 24 Assert.AreEqual("x^3+6x^2+12x+8", EdmSolution.Expand("(x+2)^3")); 25 Assert.AreEqual("x^4+8x^3+24x^2+32x+16", EdmSolution.Expand("(x+2)^4")); 26 Assert.AreEqual("x^5+10x^4+40x^3+80x^2+80x+32", EdmSolution.Expand("(x+2)^5")); 27 Assert.AreEqual("t^5+10t^4+40t^3+80t^2+80t+32", EdmSolution.Expand("(t+2)^5")); 28 Assert.AreEqual("y^15+75y^14+2625y^13+56875y^12+853125y^11+9384375y^10+78203125y^9+502734375y^8+2513671875y^7+9775390625y^6+29326171875y^5+66650390625y^4+111083984375y^3+128173828125y^2+91552734375y+30517578125", EdmSolution.Expand("(y+5)^15")); 29 } 30 31 [Test] 32 public void testBNegative() 33 { 34 Assert.AreEqual("1", EdmSolution.Expand("(x-1)^0")); 35 Assert.AreEqual("x-1", EdmSolution.Expand("(x-1)^1")); 36 Assert.AreEqual("x^2-2x+1", EdmSolution.Expand("(x-1)^2")); 37 Assert.AreEqual("x^3-3x^2+3x-1", EdmSolution.Expand("(x-1)^3")); 38 Assert.AreEqual("x^4-4x^3+6x^2-4x+1", EdmSolution.Expand("(x-1)^4")); 39 Assert.AreEqual("x^5-5x^4+10x^3-10x^2+5x-1", EdmSolution.Expand("(x-1)^5")); 40 Assert.AreEqual("1", EdmSolution.Expand("(x-2)^0")); 41 Assert.AreEqual("x-2", EdmSolution.Expand("(x-2)^1")); 42 Assert.AreEqual("x^2-4x+4", EdmSolution.Expand("(x-2)^2")); 43 Assert.AreEqual("x^3-6x^2+12x-8", EdmSolution.Expand("(x-2)^3")); 44 Assert.AreEqual("x^4-8x^3+24x^2-32x+16", EdmSolution.Expand("(x-2)^4")); 45 Assert.AreEqual("x^5-10x^4+40x^3-80x^2+80x-32", EdmSolution.Expand("(x-2)^5")); 46 Assert.AreEqual("t^5-10t^4+40t^3-80t^2+80t-32", EdmSolution.Expand("(t-2)^5")); 47 Assert.AreEqual("y^15-75y^14+2625y^13-56875y^12+853125y^11-9384375y^10+78203125y^9-502734375y^8+2513671875y^7-9775390625y^6+29326171875y^5-66650390625y^4+111083984375y^3-128173828125y^2+91552734375y-30517578125", EdmSolution.Expand("(y-5)^15")); 48 } 49 50 [Test] 51 public void testAPositive() 52 { 53 Assert.AreEqual("625m^4+1500m^3+1350m^2+540m+81", EdmSolution.Expand("(5m+3)^4")); 54 Assert.AreEqual("8x^3-36x^2+54x-27", EdmSolution.Expand("(2x-3)^3")); 55 Assert.AreEqual("1", EdmSolution.Expand("(7x-7)^0")); 56 Assert.AreEqual("35831808a^7+20901888a^6+5225472a^5+725760a^4+60480a^3+3024a^2+84a+1", EdmSolution.Expand("(12a+1)^7")); 57 Assert.AreEqual("184528125x^5-123018750x^4+32805000x^3-4374000x^2+291600x-7776", EdmSolution.Expand("(45x-6)^5")); 58 Assert.AreEqual("12c+1", EdmSolution.Expand("(12c+1)^1")); 59 Assert.AreEqual("100000000x^4-4000000x^3+60000x^2-400x+1", EdmSolution.Expand("(100x-1)^4")); 60 Assert.AreEqual("1000x^3+2400x^2+1920x+512", EdmSolution.Expand("(10x+8)^3")); 61 Assert.AreEqual("128x^7-448x^6+672x^5-560x^4+280x^3-84x^2+14x-1", EdmSolution.Expand("(2x-1)^7")); 62 Assert.AreEqual("81t^2", EdmSolution.Expand("(9t-0)^2")); 63 } 64 65 [Test] 66 public void testANegative() 67 { 68 Assert.AreEqual("625m^4-1500m^3+1350m^2-540m+81", EdmSolution.Expand("(-5m+3)^4")); 69 Assert.AreEqual("-8k^3-36k^2-54k-27", EdmSolution.Expand("(-2k-3)^3")); 70 Assert.AreEqual("1", EdmSolution.Expand("(-7x-7)^0")); 71 Assert.AreEqual("-35831808a^7+20901888a^6-5225472a^5+725760a^4-60480a^3+3024a^2-84a+1", EdmSolution.Expand("(-12a+1)^7")); 72 Assert.AreEqual("-184528125k^5-123018750k^4-32805000k^3-4374000k^2-291600k-7776", EdmSolution.Expand("(-45k-6)^5")); 73 Assert.AreEqual("-12c+1", EdmSolution.Expand("(-12c+1)^1")); 74 Assert.AreEqual("100000000x^4+4000000x^3+60000x^2+400x+1", EdmSolution.Expand("(-100x-1)^4")); 75 Assert.AreEqual("-1000x^3+2400x^2-1920x+512", EdmSolution.Expand("(-10x+8)^3")); 76 Assert.AreEqual("-128w^7-448w^6-672w^5-560w^4-280w^3-84w^2-14w-1", EdmSolution.Expand("(-2w-1)^7")); 77 Assert.AreEqual("-n^5-60n^4-1440n^3-17280n^2-103680n-248832", EdmSolution.Expand("(-n-12)^5"));//extra static test added by docgunthrop 78 Assert.AreEqual("-k^7+28k^6-336k^5+2240k^4-8960k^3+21504k^2-28672k+16384", EdmSolution.Expand("(-k+4)^7"));//extra static test added by docgunthrop 79 Assert.AreEqual("81t^2", EdmSolution.Expand("(-9t-0)^2")); 80 } 81 82 private static readonly Random rand = new Random(); 83 private static int rands(int limit) 84 { 85 return rand.Next(2 * limit + 2) - limit; 86 } 87 88 private static string makeTestCase(int c, int n, int p) 89 { 90 int coeff = 0; 91 while (coeff == 0) 92 coeff = rands(c); 93 return string.Format("({0}{1}{2:+0;-#})^{3}", coeff == 1 ? "" : (coeff == -1 ? "-" : "" + coeff), (char)('a' + rand.Next(26)), rands(n), rand.Next(p) + 2); 94 } 95 96 [Test] 97 public void testRandom() 98 { 99 100 for (int i = 0; i < 50; ++i) 101 { 102 string eq = makeTestCase(16, 32, 4); 103 Assert.AreEqual(ReferenceSolution.Expand(eq), EdmSolution.Expand(eq), "Input: " + eq); 104 } 105 106 for (int i = 0; i < 100; ++i) 107 { 108 string eq = makeTestCase(9, 16, 9); 109 Assert.AreEqual(ReferenceSolution.Expand(eq), EdmSolution.Expand(eq), "Input: " + eq); 110 } 111 } 112 113 #region Reference solution 114 private class ReferenceSolution 115 { 116 117 private static readonly Regex re = new Regex(@"\((-?\d*)([a-z])([\+\-]\d+)\)\^(\d+)"); 118 119 public static string Expand(string expr) 120 { 121 122 Match m = re.Match(expr); 123 124 string sa = m.Groups[1].Value; 125 int a = ("".Equals(sa) ? 1 : ("-".Equals(sa) ? -1 : int.Parse(sa))); 126 127 string x = m.Groups[2].Value; 128 129 string sb = m.Groups[3].Value; 130 int b = "".Equals(sb) ? 0 : int.Parse(sb); 131 132 string se = m.Groups[4].Value; 133 int exp = "".Equals(se) ? 1 : int.Parse(se); 134 if (exp == 0) 135 return "1"; 136 137 if (exp == 1) 138 return sa + x + sb; 139 140 if (b == 0) 141 { 142 long coeff = (long)Math.Pow(a, exp); 143 return (coeff == 1 ? "" : (coeff == -1 ? "-" : coeff.ToString())) + x + "^" + exp; 144 } 145 146 List<long> binoms = new List<long>(); 147 for (int i = 0; i <= exp; ++i) 148 binoms.Add(nk(exp, i)); 149 150 long coeff1 = (long)Math.Pow(a, exp); 151 StringBuilder terms = new StringBuilder(); 152 for (int i = exp; i >= 0; --i) 153 { 154 155 long coeff = coeff1 * binoms[i]; 156 157 if (i != exp && coeff > 0) 158 terms.Append('+'); 159 160 if (coeff < 0) 161 terms.Append('-'); 162 163 if ((coeff != 1 && coeff != -1) || i == 0) 164 terms.Append(coeff > 0 ? coeff : -coeff); 165 166 if (i > 0) 167 terms.Append(x); 168 169 if (i > 1) 170 terms.Append("^" + i); 171 172 coeff1 = coeff1 / a * b; 173 } 174 175 return terms.ToString(); 176 } 177 178 private static readonly List<List<long>> nka = new List<List<long>>(); 179 180 private static long nk(int n, int k) 181 { 182 183 if (n == 0 || k == 0) 184 return 1; 185 186 if (k == 1) 187 return n; 188 189 if (n - k < k) 190 return nk(n, n - k); 191 192 for (int i = nka.Count; i <= n; ++i) 193 nka.Add(new List<long>()); 194 195 List<long> ns = nka[n]; 196 for (int i = ns.Count; i <= k; ++i) 197 ns.Add(0L); 198 199 if (ns[k] != 0) 200 return ns[k]; 201 else 202 { 203 long b = nk(n - 1, k - 1) + nk(n - 1, k); 204 ns[k] = b; 205 return b; 206 } 207 } 208 } 209 #endregion 210 } 211 }
文章来源地址https://www.toymoban.com/news/detail-705739.html
到了这里,关于【算法】湖心岛上的数学梦--用c#实现一元多次方程的展开式的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!