Elasticsearch 计算距离,根据距离排序,地理点和地理多边形范围查找
总结
Elasticsearch 计算并返回距离一共有两种方法:sort 和 script_fields
环境概述
- CentOS 7.6
- Elasticsearch 7.10
创建索引
PUT /scenic_spot
{
"mappings": {
"properties": {
"id": {
"type": "keyword"
},
"name": {
"type": "text"
},
"pin": {
"properties": {
"location": {
"type": "geo_point"
}
}
}
}
},
"settings": {
"number_of_replicas": 3,
"number_of_shards": 3
}
}
索引数据
PUT /scenic_spot/_doc/1
{
"id": 1,
"name": "恭王府景区",
"pin": {
"location": {
"lat": 31.007925,
"lon": 103.607572
}
}
}
PUT /scenic_spot/_doc/2
{
"id": 2,
"name": "故宫博物院",
"pin": {
"location": {
"lat": 39.917248,
"lon": 116.397176
}
}
}
PUT /scenic_spot/_doc/3
{
"id": 3,
"name": "天坛公园",
"pin": {
"location": {
"lat": 39.881265,
"lon": 116.410638
}
}
}
PUT /scenic_spot/_doc/4
{
"id": 4,
"name": "颐和园",
"pin": {
"location": {
"lat": 39.991664,
"lon": 116.271966
}
}
}
PUT /scenic_spot/_doc/5
{
"id": 5,
"name": "八达岭长城",
"pin": {
"location": {
"lat": 40.361375,
"lon": 116.019809
}
}
}
Sort 返回距离
GET /scenic_spot/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"_geo_distance": {
"pin.location": {
"lat": 38.912780578039346,
"lon": 120.18819440815733
},
"order": "asc",
"unit": "km"
}
}
],
"size": 1
}
响应结果如下,hits 下的 sort 字段就是距离,单位:km。
{
"took" : 4,
"timed_out" : false,
"_shards" : {
"total" : 3,
"successful" : 3,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 5,
"relation" : "eq"
},
"max_score" : null,
"hits" : [
{
"_index" : "scenic_spot",
"_type" : "_doc",
"_id" : "3",
"_score" : null,
"_source" : {
"id" : 3,
"name" : "天坛公园",
"pin" : {
"location" : {
"lat" : 39.881265,
"lon" : 116.410638
}
}
},
"sort" : [
341.96155623680716
]
}
]
}
}
Script_fields 返回距离
GET /scenic_spot/_search
{
"query": {
"match_all": {}
},
"_source": true,
"script_fields": {
"distance": {
"script": {
"lang": "painless",
"params": {
"lat": 38.912780578039346,
"lon": 120.18819440815733
},
"source": "doc['pin.location'].arcDistance(params.lat, params.lon)/1000"
}
}
},
"size": 1
}
5.x 以前支持:distanceInKm(lat, lon) 函数,后来被废弃。现在只支持 arcDistance(lat, lon) 函数:计算两点距离,单位为:m。响应结果如下,hits 下的 fields.distance 字段就是距离,单位:km。
{
"took" : 3,
"timed_out" : false,
"_shards" : {
"total" : 3,
"successful" : 3,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 5,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "scenic_spot",
"_type" : "_doc",
"_id" : "5",
"_score" : 1.0,
"_source" : {
"id" : 5,
"name" : "八达岭长城",
"pin" : {
"location" : {
"lat" : 40.361375,
"lon" : 116.019809
}
}
},
"fields" : {
"distance" : [
391.55015001577397
]
}
}
]
}
}
地理点和地理多边形范围查找
Elasticsearch](https://so.csdn.net/so/search?q=Elasticsearch&spm=1001.2101.3001.7020) 是一个功能强大的搜索引擎,支持地理查询,但并不是每个人都习惯于处理空间数据。 如果你对地理处理了解不多,或者想通过 Elasticsearch 了解地理处理,那么本文适合你。在我们的现实生活中,我们经常使用的滴滴打车,美团送餐,美国的 Uber, Lyft 打车,还有一些交友 apps 等等,它们都是使用 Elasticsearch 进行位置搜索的例子。
地理距离查询返回距离点最大距离的所有文档,例如:Dolores 想认识距离她约 300 米的所有人:
红色圆圈的半径为 300 米,我们可以看到只有 William 在圆圈内。
让我们来做一下 Elasticsearch 的实现。 首先,使用属性 name 和 location 创建一个 user_location 索引。
PUT user_location
{
"mappings": {
"properties": {
"name": {
"type": "text"
},
"location": {
"type": "geo_point"
}
}
}
}
location 的数据类型为 geo_point, 表示地球上的位置。 点具有经度和纬度(坐标)。 你可以在官方文档中检查所有可接受的 geo_point 格式。
现在,让我们为 William,Robert 和 Bernard 的位置创建文档。我们使用 _bulk API 来导入数据:
POST user_location/_bulk
{ "index" : { "_id" : "1" } }
{ "name" : "William", "location": "-25.443053, -49.238396" }
{ "index" : { "_id" : "2" } }
{ "name" : "Robert", "location": "-25.440173, -49.243169" }
{ "index" : { "_id" : "3" } }
{ "name" : "Bernard", "location": "-25.440262, -49.247720" }
为了说明问题的方便,我特地创建一个新的索引叫做 locations,它包含了 Dolores 的位置信息:
PUT locations
{
"mappings": {
"properties": {
"name": {
"type": "text"
},
"location": {
"type": "geo_point"
}
}
}
}
POST locations/_bulk
{ "index" : { "_id" : "1" } }
{ "name" : "William", "location": "-25.443053, -49.238396" }
{ "index" : { "_id" : "2" } }
{ "name" : "Robert", "location": "-25.440173, -49.243169" }
{ "index" : { "_id" : "3" } }
{ "name" : "Bernard", "location": "-25.440262, -49.247720" }
{ "index" : { "_id" : "4" } }
{ "name" : "Dolores", "location": "-25.442987, -49.239504" }
在上面的 _id 为 4 的文档就是 Doloes 的位置信息。我们来创建一个叫做 locations 的索引模式:
我们打开 Maps 应用:
我们发现这四个位置位于南美的某个地方。我们编辑 location 层的设置,当我们点击该位置的时候,显示名字及 id。我们调整合适的 zoom 大小:
从上面的图中,我们很清楚地看到每个人的相对的位置。离 Dolores 最近的就是 Willam,也就是那个被盖着的那个,接着就是 Robert。最远的就是 Bernard。请注意,我们上面的展示都是以 locations 这个索引来进行展示的。它里面含有 Dolores。我们现在使用 user_location 索引来进行搜索:
GET user_location/_search
{
"query": {
"bool": {
"filter": {
"geo_distance": {
"distance": "300m",
"location": "-25.442987, -49.239504"
}
}
}
}
}
在上面,我们针对 Dolores 来进行搜索。显示的结果是:
{
"took" : 55,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 0.0,
"hits" : [
{
"_index" : "user_location",
"_type" : "_doc",
"_id" : "1",
"_score" : 0.0,
"_source" : {
"name" : "William",
"location" : "-25.443053, -49.238396"
}
}
]
}
}
也就是说在 Dolores 方圆 300m 之内,只有 William。如果我们把半径增加到 600 m,那么我可以看到 Robert:
GET user_location/_search
{
"query": {
"bool": {
"filter": {
"geo_distance": {
"distance": "600m",
"location": "-25.442987, -49.239504"
}
}
}
}
}
{
"took" : 2,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 2,
"relation" : "eq"
},
"max_score" : 0.0,
"hits" : [
{
"_index" : "user_location",
"_type" : "_doc",
"_id" : "1",
"_score" : 0.0,
"_source" : {
"name" : "William",
"location" : "-25.443053, -49.238396"
}
},
{
"_index" : "user_location",
"_type" : "_doc",
"_id" : "2",
"_score" : 0.0,
"_source" : {
"name" : "Robert",
"location" : "-25.440173, -49.243169"
}
}
]
}
}
地理多边形查询可获取多边形内的文档。
“多边形是具有直边的封闭形状。 矩形,三角形,六边形和八边形都是多边形的例子。”
它由点列表表示。 两点之间最接近的路径是一条直线。 多边形的起点和终点均相同。 在下面的图上检查下面的植物园多边形。
请注意,Elasticsearch 上的地理查询会检查文档的 geo_point 属性是否在多边形内。 例:Dolores 想知道植物园内的每个人。
文章来源:https://www.toymoban.com/news/detail-705978.html
GET user_location/_search
{
"query": {
"bool": {
"filter": {
"geo_polygon": {
"location": {
"points": [
"-25.44373,-49.24248",
"-25.44297,-49.24230",
"-25.44177,-49.23642",
"-25.43961,-49.23822",
"-25.43991,-49.23781",
"-25.44170,-49.23647",
"-25.44210,-49.23586",
"-25.44218,-49.23506",
"-25.44358,-49.23491",
"-25.44406,-49.24139",
"-25.44373,-49.24248"
]
}
}
}
}
}
}
上面的搜索返回的结果:文章来源地址https://www.toymoban.com/news/detail-705978.html
{
"took" : 15,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 0.0,
"hits" : [
{
"_index" : "user_location",
"_type" : "_doc",
"_id" : "1",
"_score" : 0.0,
"_source" : {
"name" : "William",
"location" : "-25.443053, -49.238396"
}
}
]
}
}
到了这里,关于Elasticsearch计算距离,根据距离排序,地理点和地理多边形范围查找的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!