申威芯片UOS中opencv DNN推理

这篇具有很好参考价值的文章主要介绍了申威芯片UOS中opencv DNN推理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Cmake,opencv,opencv-contribute安装

#apt可能需要更新apt update
apt install -y wget unzip
apt-get install build-essential libgtk2.0-dev libgtk-3-dev libavcodec-dev libavformat-dev libjpeg-dev libswscale-dev libtiff5-dev

#安装cmake
apt install cmake
查看cmake
cmake -version
#下载opencv
wget -O opencv.zip https://github.com/opencv/opencv/archive/4.5.0.zip

unzip opencv.zip
mv opencv-4.5.0 opencv
cd opencv

#下载opencv_contrib
wget -O opencv_contrib.zip https://github.com/opencv/opencv_contrib/archive/4.5.0.zip
unzip opencv_contrib.zip
mv opencv_contrib-4.5.0  opencv_contrib

mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=RELEASE \
    -DINSTALL_PYTHON_EXAMPLES=ON \
    -DINSTALL_C_EXAMPLES=ON \
    -DOPENCV_EXTRA_MODULES_PATH=../opencv_contrib/modules \
    -DBUILD_EXAMPLES=ON ..

make -j4
make install

编译opencv dnn yolov5

#配置CMakeLists.txt,放入工程

cmake_minimum_required(VERSION 2.8)
project( yolo )
find_package( OpenCV REQUIRED )
include_directories( ${OpenCV_INCLUDE_DIRS} )
add_executable( yolo main.cpp yolo.cpp )
target_link_libraries( yolo ${OpenCV_LIBS} )

在opencvdnn工程中:

mkdir build && build
cmake ..
make -j4
./yolo

申威芯片UOS中opencv DNN推理,opencv,dnn,webpack文章来源地址https://www.toymoban.com/news/detail-706480.html

到了这里,关于申威芯片UOS中opencv DNN推理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用OpenCV DNN推理YOLOv5-CLS转换后的ONNX分类模型

    YOLOv5是一种先进的目标检测算法,而YOLOv5-CLS则是YOLOv5的一个变种,专门用于图像分类任务。为了在实际应用中使用YOLOv5-CLS模型,我们需要将其转换为Open Neural Network Exchange (ONNX) 格式,并使用OpenCV DNN库来进行推理。 步骤1: 安装OpenCV和ONNX 首先,你需要确保已经安装了OpenCV和

    2024年02月16日
    浏览(65)
  • 【模型部署 01】C++实现GoogLeNet在OpenCV DNN、ONNXRuntime、TensorRT、OpenVINO上的推理部署

    深度学习领域常用的基于CPU/GPU的推理方式有OpenCV DNN、ONNXRuntime、TensorRT以及OpenVINO。这几种方式的推理过程可以统一用下图来概述。整体可分为模型初始化部分和推理部分,后者包括步骤2-5。 以GoogLeNet模型为例,测得几种推理方式在推理部分的耗时如下: 结论: GPU加速首选

    2024年02月06日
    浏览(57)
  • 【模型部署 01】C++实现分类模型(以GoogLeNet为例)在OpenCV DNN、ONNXRuntime、TensorRT、OpenVINO上的推理部署

    深度学习领域常用的基于CPU/GPU的推理方式有OpenCV DNN、ONNXRuntime、TensorRT以及OpenVINO。这几种方式的推理过程可以统一用下图来概述。整体可分为模型初始化部分和推理部分,后者包括步骤2-5。 以GoogLeNet模型为例,测得几种推理方式在推理部分的耗时如下: 结论: GPU加速首选

    2024年02月06日
    浏览(57)
  • OpenCV中DNN模块

             OpenCV自3.3版本开始,加入了对深度学习网络的支持,即DNN模块,它支持主流的深度学习框架生成与到处模型的加载。         OpenCV中的深度学习模块(DNN)只提供了推理功能,不涉及模型的训练,支持多种深度学习框架,比如TensorFlow,Caffe,Torch和Darknet。 轻量

    2024年02月15日
    浏览(42)
  • opencv-dnn

    2024年02月12日
    浏览(38)
  • OpenCV图像处理——DNN模块

    图像处理总目录←点击这里 随着计算机视觉的流行,opencv 也专门开发了 dnn 模块来实现 深度神经网络相关 的功能; opencv 无法训练模型,但它支持载入其他深度学习框架训练好的模型,并使用该模型进行预测 inference; opencv 在载入模型时会使用 dnn 模块对模型进行重写,使得

    2024年02月12日
    浏览(43)
  • Opencv-DNN模块之官方指导:利用DNN模块实现深度学习应用:分类、分割、检测、跟踪等

    本文根据 Deep Learning with OpenCV DNN Module: A Definitive Guide 中相关内容进行翻译整理而得,用于今后的学习和工程。   § 00 前   言 ---   机器视觉研究领域从上个世纪六十年后期就已创立。图像分类和物体检测是计算机视觉领域中的一些最古老的的问题,研究者为解决它进行

    2024年02月05日
    浏览(63)
  • 【Opencv】cv::dnn::NMSBoxes()函数详解

    本文通过原理和示例对cv::dnn::NMSBoxes()进行解读,帮助大家理解和使用。 cv::dnn::NMSBoxes是OpenCV库中的一个函数,用于在目标检测中处理多个预测框。在目标检测中,模型可能会为同一个物体生成多个预测框,这时就需要通过非极大值抑制(Non-Maximum Suppression,NMS)来抑制冗余

    2024年02月04日
    浏览(116)
  • 解决Cmake编译 OPENCV_DNN_CUDA 报错: CMake Error at modules/dnn/CMakeLists.txt:39.

    首先,在camke编译过程中,不仅仅需要看报错的error部分,往上滑动会看见一行信息: 如果你没有装Cudnn,那么装上Cudnn再试试。注意,安装版本最低是7.5! 如果你装了7.5及以上版本还是会报错和有上面这行信息,请注意,这可能是在Cudnn 8版本以后的问题! 原因是cudnn 8的版本

    2024年02月16日
    浏览(48)
  • yolov8 opencv dnn部署 github代码

    源码地址 本人使用的opencv c++ github代码,代码作者非本人 实现推理源码中作者的yolov8s.onnx 推理条件 windows 10 Visual Studio 2019 Nvidia GeForce GTX 1070 opencv4.7.0 (opencv4.5.5在别的地方看到不支持yolov8的推理,所以只使用opencv4.7.0) c++部署 先将源码复制到下图位置中 环境和代码的大致步骤跟

    2024年01月23日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包