时序分解 | MATLAB实现ICEEMDAN+SE改进的自适应经验模态分解+样本熵重构分量

这篇具有很好参考价值的文章主要介绍了时序分解 | MATLAB实现ICEEMDAN+SE改进的自适应经验模态分解+样本熵重构分量。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

时序分解 | MATLAB实现ICEEMDAN+SE改进的自适应经验模态分解+样本熵重构分量

效果一览

时序分解 | MATLAB实现ICEEMDAN+SE改进的自适应经验模态分解+样本熵重构分量,时序分解,ICEEMDAN,SE,改进的自适应经验模态分解,样本熵重构分量
时序分解 | MATLAB实现ICEEMDAN+SE改进的自适应经验模态分解+样本熵重构分量,时序分解,ICEEMDAN,SE,改进的自适应经验模态分解,样本熵重构分量

时序分解 | MATLAB实现ICEEMDAN+SE改进的自适应经验模态分解+样本熵重构分量,时序分解,ICEEMDAN,SE,改进的自适应经验模态分解,样本熵重构分量

基本介绍

ICEEMDAN+SE改进的自适应经验模态分解+样本熵重构分量
包括频谱图
避免了传统经验模态分解的一些固有缺陷 效果更佳
附赠案例数据 可直接运行
直接替换excel数据即可使用 适合新手小白

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现ICEEMDAN+SE改进的自适应经验模态分解+样本熵重构分量
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

cosD = pdist(meas,'cosine');
clustTreeCos = linkage(cosD,'average');
cophenet(clustTreeCos,cosD)

ans =

    0.9360
[h,nodes] = dendrogram(clustTreeCos,0);
h_gca = gca;
h_gca.TickDir = 'out';
h_gca.TickLength = [.002 0];
h_gca.XTickLabel = [];
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/119920826



figure
hidx = cluster(clustTreeCos,'criterion','distance','cutoff',.006);
for i = 1:5
    clust = find(hidx==i);
    plot3(meas(clust,1),meas(clust,2),meas(clust,3),ptsymb{i});
    hold on
end
hold off
xlabel('Sepal Length');
ylabel('Sepal Width');
zlabel('Petal Length');
view(-137,10);
grid on

————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/119920826

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718文章来源地址https://www.toymoban.com/news/detail-706638.html

到了这里,关于时序分解 | MATLAB实现ICEEMDAN+SE改进的自适应经验模态分解+样本熵重构分量的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 时序分解 | Matlab实现CEEMD互补集合经验模态分解时间序列信号分解

    效果一览 基本介绍 Matlab实现CEEMD互补集合经验模态分解时间序列信号分解 1.分解效果图 ,效果如图所示,可完全满足您的需求~ 2.直接替换txt数据即可用 适合新手小白 注释清晰~ 3.附赠案例数据 直接运行main一键出图~ 程序设计 完整源码和数据获取方式:Matlab实现CEEMD互补

    2024年02月08日
    浏览(51)
  • 时序分解 | MATLAB实现基于SVD奇异值分解的信号分解分量可视化

    效果一览 基本介绍 SVD分解重构算法,MATLAB程序,奇异值分解 (Singular Value Decomposition)是一种常见的矩阵分解方法,用于将矩阵分解成三个矩阵的乘积。在信号处理中,SVD 可以用于特征提取、信号降维、图像压缩等方面。SVD 的一个重要应用是主成分分析 (PCA),可以用于提取数

    2024年02月11日
    浏览(49)
  • 时序分解 | MATLAB实现基于SGMD辛几何模态分解的信号分解分量可视化

    效果一览 基本介绍 SGMD分解算法(辛几何模态分解),分解结果可视化,MATLAB程序,包含包络线,包络谱,中心频率,峭度值,能量熵,模糊熵,样本熵,近似熵,包络熵,频谱等指标。 将时间序列分解为一组独立的模态分量。模态混叠情况大幅度降低,利用辛几何相似度变

    2024年02月11日
    浏览(52)
  • 时序分解 | MATLAB实现MVMD多元变分模态分解信号分量可视化

    效果一览 基本介绍 MVMD多元变分模态分解 可直接替换 Matlab语言 1.算法新颖小众,用的人很少,包含分解图,效果如图所示,适合作为创❤️~ 2.直接替换数据即可用 适合新手小白 注释清晰~ 3.附赠测试数据 直接运行main一键出图~ 程序设计 完整源码和数据获取方式:私信

    2024年02月09日
    浏览(36)
  • 时序分解 | MATLAB实现基于SSA奇异谱分析的信号分解分量可视化

    效果一览 基本介绍 奇异谱分解奇异谱分析SSA 可直接替换txt数据运行 Matlab 1.分解效果图 ,效果如图所示,可完全满足您的需求~ 2.直接替换txt数据即可用 适合新手小白 注释清晰~ 3.附赠案例数据 直接运行main一键出图~ 程序设计 完整源码和数据获取方式:MATLAB实现基于S

    2024年02月09日
    浏览(57)
  • 基于预测控制模型的自适应巡航控制仿真与机器人实现(Matlab代码实现)

         目录 💥1 概述 📚2 运行结果 🎉3 参考文献 👨‍💻4 Matlab代码 自适应巡航控制技术为目前由于汽车保有量不断增长而带来的行车安全、驾驶舒适性及交通拥堵等问题提供了一条有效的解决途径,因此本文通过理论分析、仿真验证及实车实验对自适应巡航控制中的若干

    2024年02月16日
    浏览(46)
  • 时序分解 | Matlab实现NGO-VMD北方苍鹰算法优化变分模态分解时间序列信号分解

    效果一览 基本介绍 北方苍鹰算法NGO优化VMD,对其分解层数,惩罚因子数做优化,利用NGO优化算法确定其最佳参数,适应度函数为样本熵。 NGO-VMD北方苍鹰算法NGO优化VMD变分模态分解 可直接运行 分解效果好 适合作为创新点(Matlab完整源码和数据) 1.利用北方苍鹰算法算法优化

    2024年02月05日
    浏览(56)
  • 用于永磁同步电机驱动器的自适应SDRE非线性无传感器速度控制(Matlab&Simulink实现)

    目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码Simulink仿真实现 本文方法基于状态依赖的里卡蒂方程(SDRE)控制技术及其梯度型神经网络的实时计算方法,允许在线控制PMSM。 为了实现用于永磁同步电机驱动器的自适应 SDRE(State-Dependent Riccati Equation)非线性无传感

    2024年02月15日
    浏览(43)
  • 基于变分贝叶斯的自适应卡尔曼滤波(matlab)

        参考文献《Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations》中的算法,用matlab编写了一个小程序测试了一下(demo版本)。程序是按照文章中的内容实现的。     下面是主程序:     下面是调用到的几个函数:     函数一(cholesky分解,

    2024年02月11日
    浏览(43)
  • 时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比

    效果一览 基本介绍 时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比。 1.MATLAB实现EEMD-LSTM、LSTM时间序列预测对比; 2.时间序列预测 就是先eemd把原输入全分解变成很多维作为输入 再输入LSTM预测 ; 3.运行环境Matlab2018b及以上,输出RM

    2024年02月13日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包