OpenCV(十九):模板匹配

这篇具有很好参考价值的文章主要介绍了OpenCV(十九):模板匹配。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.模板匹配:

     OpenCV提供了一个模板匹配函数,用于在图像中寻找给定模板的匹配位置。

2.图像模板匹配函数matchTemplate

 void matchTemplate( InputArray image, InputArray templ,

OutputArray result, int method, InputArray mask = noArray() );

  • image:待模板匹配的原图像,图像数据类型为CV 8U和CV 32F两者中的一个。
  • templ:模板图像,需要与image具有相同的数据类型,但是尺寸不能大于image。
  • result:模板匹配结果输出图像,图像数据类型为CV 32F。如果image的尺寸为WXH,模板图像尺寸为wxh,则输出图像的尺寸为 (W-w+1)XH-+1)。
  • method:模板匹配方法标志。
  • mask: 匹配模板的掩码,必须与模板图像具有相同的数据类型和尺寸,默认情况下不设置,目前仅支持在TM_SODIFF和TM_CCORR_NORMED这两种匹配方法时使用。

其中,图像模板匹配方法标志:

OpenCV(十九):模板匹配,Android之OpenCV,opencv,人工智能,计算机视觉,C++文章来源地址https://www.toymoban.com/news/detail-707029.html

3.示例代码:

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv;
using namespace std;

//模板匹配
void Template_matching(Mat img,Mat temp){
Mat result;
matchTemplate(img,temp,result,TM_CCOEFF_NORMED);
//在结果图像中找到最佳匹配位置:
double maxVal,minVal;
Point maxLoc,minLoc;
minMaxLoc(result,&minVal,&maxVal,&minLoc,&maxLoc);
//在原始图像上绘制矩形框标记最佳匹配位置:
rectangle(img,Point(maxLoc.x,maxLoc.y),Point(maxLoc.x+temp.cols,maxLoc.y+temp.rows),Scalar(0,0,0),2);

imwrite("/sdcard/DCIM/img.png",img);//原图像
imwrite("/sdcard/DCIM/temp.png",temp);//模板
}

到了这里,关于OpenCV(十九):模板匹配的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 用OpenCV进行模板匹配

    用OpenCV进行模板匹配

    今天我们来研究一种传统图像处理领域中对象检测和跟踪不可或缺的方法——模板匹配,其主要目的是为了在图像上找到我们需要的图案,这听起来十分令人兴奋。 所以,事不宜迟,让我们直接开始吧! 模板匹配的算法的核心十分简单:它将模板与源图像中的每个部分进行

    2024年02月10日
    浏览(19)
  • OPENCV C++(十二)模板匹配

    OPENCV C++(十二)模板匹配

    正常模板匹配函数  这里0代表的是方法,一般默认为0就ok  img是输入图像 templatee是模板 resultmat是输出 对于输出的说明: 就是说result图像中的每一个点的值代表了一次相似度比较结果。  如图可知,模板在待测图像上每次在横向或是纵向上移动一个像素,并作一次比较计算

    2024年02月13日
    浏览(10)
  • 008 OpenCV matchTemplate 模板匹配

    008 OpenCV matchTemplate 模板匹配

    目录 一、环境 二、模板匹配算法原理 三、代码演示 本文使用环境为: Windows10 Python 3.9.17 opencv-python 4.8.0.74 cv.matchTemplate 是OpenCV库中的一个函数,用于在图像中查找与模板匹配的特征。它的主要应用场景是在图像处理、计算机视觉和模式识别等领域。 算法原理: cv.matchTempl

    2024年02月05日
    浏览(8)
  • OpenCV(11):模板匹配实例讲解

    OpenCV(11):模板匹配实例讲解

    在OpenCV中,模板匹配是一种图像处理技术,用于在一个大的图像中查找和定位一个小的目标图像(也称为模板)。 通俗而言,就是通过一张图片找到和另一张图片相似的部分。 从此章开始,opencv系列所有的之后更新的博客都会更注重实际应用,而不是仅仅简单讲解一个小方

    2024年02月04日
    浏览(6)
  • 【OpenCV】第十五章: 模板匹配

    【OpenCV】第十五章: 模板匹配

    第十五章: 模板匹配 模板匹配就是在给定的图片中查找和模板最相似的区域。 实现的方法是:将模板在图片上滑动(从左向右,从上向下),遍历所有滑窗,计算匹配度,将所有计算结果保存在一个矩阵种,并将矩阵中匹配度最高的值作为匹配结果。 一、单模板匹配 1、匹配函

    2024年02月02日
    浏览(12)
  • opencv 多角度模板匹配

    opencv 多角度模板匹配

    总结一下实现多角度模板匹配踩的坑 一 、多角度匹配涉及到要使用mask,首先opencv matchTemplateMask自带的源码如下: 可以看到使用用了四次dft来计算卷积,目标图像要与mask卷三次,来计算目标图像在模板区域内的和,平方和。其中最后一次CCorr(I, mask2)可以省略掉,它跟CCorr(I

    2024年02月07日
    浏览(12)
  • OpenCV自学笔记十八:模板匹配

    模板匹配是一种在图像中寻找指定模式的方法。OpenCV库提供了用于模板匹配的函数,可以帮助我们在图像中定位和识别特定的模式。下面是模板匹配的基础原理和一个示例: 模板匹配通过在待匹配图像上滑动一个固定大小的模板图像,并计算模板与图像之间的相似度来寻找匹

    2024年02月07日
    浏览(11)
  • 图像模板匹配 opencv c++实现

    图像模板匹配 opencv c++实现

    用T表示模板图像,I表示待匹配图像,切模板图像的宽为w高为h,用R表示匹配结果,匹配过程如下图所示: 1、平方差匹配算法method=TM_SQDIFF 这类方法利用平法差来进行匹配,最好匹配为0,而若匹配越差,匹配值则越大 2、归一化平方差匹配法method=TM_SQDIFF_NORMED 3、相关匹配法

    2024年02月04日
    浏览(10)
  • Opencv实验合集——实验六:模板匹配

    Opencv实验合集——实验六:模板匹配

    1.概念 模板匹配旨在在图像中找到与给定模板最相似的部分。其核心思想是通过滑动模板,计算每个位置与模板的相似性,然后找到最匹配的位置。这一过程常涉及选择匹配度量方法,如平方差匹配、归一化平方差匹配、相关性匹配等。模板匹配在目标检测、物体识别等领域

    2024年02月02日
    浏览(9)
  • 【OpenCV入门】第九部分——模板匹配

    【OpenCV入门】第九部分——模板匹配

    模板是被查找的图像。模板匹配是指查找模板在原始图像中的哪个位置的过程。 image: 原始图像 templ: 模板图像,尺寸必须小于或等于原始图像 method: 匹配的方法 mask: (可选)掩模,只有 cv2.TM_SQDIFF和 c2.TM_CCORR_NORMED 支持此参数,建议采用默认值 result: 计算得出的匹配结

    2024年02月09日
    浏览(7)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包