09-JVM垃圾收集底层算法实现

这篇具有很好参考价值的文章主要介绍了09-JVM垃圾收集底层算法实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

上一篇:08-JVM垃圾收集器详解

1.三色标记

在并发标记的过程中,因为标记期间应用线程还在继续跑,对象间的引用可能发生变化,多标和漏标的情况就有可能发生。

这里我们引入“三色标记”来给大家解释下,把Gcroots可达性分析遍历对象过程中遇到的对象, 按照“是否访问过”这个条件标记成以下三种颜色:

  • 黑色: 表示对象已经被垃圾收集器访问过, 且这个对象的所有引用都已经扫描过。 黑色的对象代表已经扫描过, 它是安全存活的, 如果有其他对象引用指向了黑色对象, 无须重新扫描一遍。 黑色对象不可能直接(不经过灰色对象) 指向某个白色对象。
  • 灰色: 表示对象已经被垃圾收集器访问过, 但这个对象上至少存在一个引用还没有被扫描过。
  • 白色: 表示对象尚未被垃圾收集器访问过。 显然在可达性分析刚刚开始的阶段, 所有的对象都是白色的, 若在分析结束的阶段, 仍然是白色的对象, 即代表不可达。

09-JVM垃圾收集底层算法实现,性能调优-JVM,jvm,算法,java

/**
 * 垃圾收集算法细节之三色标记
 * 为了简化例子,代码写法可能不规范,请忽略
 * Created by 诸葛老师
 */
public class ThreeColorRemark {

    public static void main(String[] args) {
        A a = new A();
        //开始做并发标记
        D d = a.b.d;   // 1.读
        a.b.d = null;  // 2.写
        a.d = d;       // 3.写
    }
}

class A {
    B b = new B();
    D d = null;
}

class B {
    C c = new C();
    D d = new D();
}

class C {
}

class D {
}

2.多标-浮动垃圾

在并发标记过程中,如果由于方法运行结束导致部分局部变量(gcroot)被销毁,这个gcroot引用的对象之前又被扫描过(被标记为非垃圾对象),那么本轮GC不会回收这部分内存。这部分本应该回收但是没有回收到的内存,被称之为“浮动垃圾”。浮动垃圾并不会影响垃圾回收的正确性,只是需要等到下一轮垃圾回收中才被清除。
另外,针对并发标记(还有并发清理)开始后产生的新对象,通常的做法是直接全部当成黑色,本轮不会进行清除。这部分对象期间可能也会变为垃圾,这也算是浮动垃圾的一部分。

3.漏标-读写屏障

漏标会导致被引用的对象被当成垃圾误删除,这是严重bug,必须解决,有两种解决方案: 增量更新(Incremental Update) 和原始快照(Snapshot At The Beginning,SATB) 。
增量更新就是当黑色对象插入新的指向白色对象的引用关系时, 就将这个新插入的引用记录下来, 等并发扫描结束之后, 再将这些记录过的引用关系中的黑色对象为根, 重新扫描一次。 这可以简化理解为, 黑色对象一旦新插入了指向白色对象的引用之后, 它就变回灰色对象了。
原始快照就是当灰色对象要删除指向白色对象的引用关系时, 就将这个要删除的引用记录下来, 在并发扫描结束之后, 再将这些记录过的引用关系中的灰色对象为根, 重新扫描一次,这样就能扫描到白色的对象,将白色对象直接标记为黑色(目的就是让这种对象在本轮gc清理中能存活下来,待下一轮gc的时候重新扫描,这个对象也有可能是浮动垃圾)
以上无论是对引用关系记录的插入还是删除, 虚拟机的记录操作都是通过写屏障实现的。

1.写屏障

给某个对象的成员变量赋值时,其底层代码大概长这样:

/**
* @param field 某对象的成员变量,如 a.b.d 
* @param new_value 新值,如 null
*/
void oop_field_store(oop* field, oop new_value) { 
    *field = new_value; // 赋值操作
} 

所谓的写屏障,其实就是指在赋值操作前后,加入一些处理(可以参考AOP的概念):
void oop_field_store(oop* field, oop new_value) {  
    pre_write_barrier(field);          // 写屏障-写前操作
    *field = new_value; 
    post_write_barrier(field, value);  // 写屏障-写后操作
}

写屏障实现SATB
当对象B的成员变量的引用发生变化时,比如引用消失(a.b.d = null),我们可以利用写屏障,将B原来成员变量的引用对象D记录下来:

void pre_write_barrier(oop* field) {
    oop old_value = *field;    // 获取旧值
    remark_set.add(old_value); // 记录原来的引用对象
}

写屏障实现增量更新
当对象A的成员变量的引用发生变化时,比如新增引用(a.d = d),我们可以利用写屏障,将A新的成员变量引用对象D记录下来:

void post_write_barrier(oop* field, oop new_value) {  
    remark_set.add(new_value);  // 记录新引用的对象
}

2.读屏障

oop oop_field_load(oop* field) {
    pre_load_barrier(field); // 读屏障-读取前操作
    return *field;
}

读屏障是直接针对第一步:D d = a.b.d,当读取成员变量时,一律记录下来:

void pre_load_barrier(oop* field) {  
    oop old_value = *field;
    remark_set.add(old_value); // 记录读取到的对象
}

现代追踪式(可达性分析)的垃圾回收器几乎都借鉴了三色标记的算法思想,尽管实现的方式不尽相同:比如白色/黑色集合一般都不会出现(但是有其他体现颜色的地方)、灰色集合可以通过栈/队列/缓存日志等方式进行实现、遍历方式可以是广度/深度遍历等等。

对于读写屏障,以Java HotSpot VM为例,其并发标记时对漏标的处理方案如下:

  • CMS:写屏障 + 增量更新
  • G1,Shenandoah:写屏障 + SATB
  • ZGC:读屏障

工程实现中,读写屏障还有其他功能,比如写屏障可以用于记录跨代/区引用的变化,读屏障可以用于支持移动对象的并发执行等。功能之外,还有性能的考虑,所以对于选择哪种,每款垃圾回收器都有自己的想法。

为什么G1用SATB?CMS用增量更新?

我的理解:SATB相对增量更新效率会高(当然SATB可能造成更多的浮动垃圾),因为不需要在重新标记阶段再次深度扫描被删除引用对象,而CMS对增量引用的根对象会做深度扫描,G1因为很多对象都位于不同的region,CMS就一块老年代区域,重新深度扫描对象的话G1的代价会比CMS高,所以G1选择SATB不深度扫描对象,只是简单标记,等到下一轮GC再深度扫描。

4.记忆集与卡表

在新生代做GCRoots可达性扫描过程中可能会碰到跨代引用的对象,这种如果又去对老年代再去扫描效率太低了。
为此,在新生代可以引入记录集(Remember Set)的数据结构(记录从非收集区到收集区的指针集合),避免把整个老年代加入GCRoots扫描范围。事实上并不只是新生代、 老年代之间才有跨代引用的问题, 所有涉及部分区域收集(Partial GC) 行为的垃圾收集器, 典型的如G1、 ZGC和Shenandoah收集器, 都会面临相同的问题。
垃圾收集场景中,收集器只需通过记忆集判断出某一块非收集区域是否存在指向收集区域的指针即可,无需了解跨代引用指针的全部细节。
hotspot使用一种叫做“卡表”(Cardtable)的方式实现记忆集,也是目前最常用的一种方式。关于卡表与记忆集的关系, 可以类比为Java语言中HashMap与Map的关系。
卡表是使用一个字节数组实现:CARD_TABLE[ ],每个元素对应着其标识的内存区域一块特定大小的内存块,称为“卡页”。
hotSpot使用的卡页是2^9大小,即512字节
09-JVM垃圾收集底层算法实现,性能调优-JVM,jvm,算法,java

一个卡页中可包含多个对象,只要有一个对象的字段存在跨代指针,其对应的卡表的元素标识就变成1,表示该元素变脏,否则为0.
GC时,只要筛选本收集区的卡表中变脏的元素加入GCRoots里。

卡表的维护
卡表变脏上面已经说了,但是需要知道如何让卡表变脏,即发生引用字段赋值时,如何更新卡表对应的标识为1。
Hotspot使用写屏障维护卡表状态。

下一篇:10-JVM调优工具详解文章来源地址https://www.toymoban.com/news/detail-707058.html

到了这里,关于09-JVM垃圾收集底层算法实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • JVM垃圾回收算法和CMS垃圾收集器

    目录 判断一个对象是否死亡? 1、引用计数法  2、可达性分析算法 三色标记 垃圾收集算法 1、分代收集理论  2、垃圾回收算法 标记-清除 标记-复制 标记-整理 CMS(Concurrent Mark Sweep)收集器 CMS垃圾收集器步骤 CMS垃圾收集器优缺点 垃圾收集需要完成的三件事情: 哪些内存需

    2024年02月10日
    浏览(47)
  • JVM-垃圾回收(标记算法,收集器)

    申明:文章内容是本人学习极客时间课程所写,文字和图片基本来源于课程资料,在某些地方会插入一点自己的理解,未用于商业用途,侵删。 原资料地址:课程资料 垃圾回收的基本原理 1 什么是垃圾? 在内存中,没有被引用的对象就是垃圾。 2 如果找到垃圾对象? 引用计

    2024年02月21日
    浏览(54)
  • Java虚拟机(JVM):垃圾收集算法

    目录 一、分代收集理论 二、标记-清除算法 三、标记-复制算法  四、标记-整理算法 分代收集理论建立在两个分代假说之上: 1、弱分代假说:绝大多数对象都是朝生夕灭的。 2、强分代假说:熬过越多次垃圾收集过程的对象就越难以消亡。 这两个分代假说共同奠定了多款垃

    2024年02月12日
    浏览(51)
  • JVM——分代收集理论和垃圾回收算法

    弱分代假说 :绝大多数对象都是朝生夕灭的。 强分代假说 :熬过越多次垃圾收集过程的对象越难以消亡。         这两个分代假说共同奠定了多款常用的垃圾收集器的一致的设计原则: 收集器应该将Java堆划分出不同的区域 ,然后将 回收对象依据其年龄 (年龄即对象熬

    2024年02月12日
    浏览(49)
  • 小研究 - 浅析 JVM 中 GC 回收算法与垃圾收集器

    本文主要介绍了JVM虚拟机中非常重要的两个部分,GC 回收算法和垃圾收集器。从可回收对象的标记开始,详细介绍 了四个主流的GC算法,详细总结了各自的算法思路及优缺点, 提出了何种情况下应该通常选用哪种算法。 目录 1 标记可回收对象 1.1 引用计数器 1.2 可达性分析

    2024年02月14日
    浏览(41)
  • 【JVM】JVM垃圾收集器

    垃圾收集器是负责 执行垃圾回收的组件 ,它们用于 管理Java程序运行时的内存分配和释放 。垃圾收集器的主要任务是 自动回收不再使用的内存对象 ,并将 内存空间重新回收 以供程序继续使用。 Serial和Serial Old串行垃圾收集器,是指 使用单线程进行垃圾回收 ,堆内存较小,

    2024年02月13日
    浏览(43)
  • JVM 垃圾收集器

    重点:CMS,G1,ZGC 主要垃圾收集器如下,图中标出了它们的工作区域、垃圾收集算法,以及配合关系。 Serial 收集器 Serial 收集器是最基础、历史最悠久的收集器。 如同它的名字(串行),它是一个单线程工作的收集器,使用一个处理器或一条收集线程去完成垃圾收集工作。

    2024年02月10日
    浏览(50)
  • JVM 垃圾收集

    分代理论 弱分代假说:绝大多数对象都是朝生夕灭,即绝大多数对象都是用完很快需要销毁的。 强分代假说:熬过多次垃圾收集过程的对象就越难以消亡,即如果对象经过多次垃圾收集后仍存活,那么这些对象一般是长久存在难以消亡的,即进入永久代。 跨代引用假说:跨

    2024年02月11日
    浏览(40)
  • JVM垃圾回收——G1垃圾收集器

    目录 一、什么是G1垃圾收集器 二、G1垃圾收集器的内存划分 三、G1垃圾收集器的收集过程  四、G1收集器的优缺点 五、G1收集器的JVM参数配置         Garbage First(简称G1)收集器是垃圾收集器技术发展史上里程碑式的成果,它摒弃了传统垃圾收集器的严格的内存划分,而是采

    2024年02月05日
    浏览(46)
  • 3.Java面试题—JVM基础、内存管理、垃圾回收、JVM 调优

    一篇文章掌握整个JVM,JVM超详细解析!!! JVM (Java虚拟机) 是运行 Java 字节码 的 虚拟机 。 JVM 针对 不同系统 有 特定实现 ( Windows 、 Linux 等),目的是 同样的代码 在 不同平台 能运行出 相同的结果 。 Java 语言 要经过 编译 和 解释 两个步骤: 编译 :通过 编译器 将 代码 一

    2024年02月15日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包