【深度学习】分类损失函数解析

这篇具有很好参考价值的文章主要介绍了【深度学习】分类损失函数解析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【深度学习】分类相关的损失解析

1. 介绍

在分类任务中,我们通常使用各种损失函数来衡量模型输出与真实标签之间的差异。有时候搞不清楚用什么,下面是几种常见的分类相关损失函数及其解析,与代码示例

【深度学习】分类损失函数解析,深度学习(机器学习),使用说明,方法介绍,深度学习,分类,人工智能

2. 解析

  • 二元交叉熵损失(Binary Cross Entropy Loss,BCELoss):
    torch.nn.BCELoss() 是用于二元分类的损失函数。它将模型输出的概率与真实标签的二进制值进行比较,并计算二元交叉熵损失。BCELoss 可以处理每个样本属于多个类别的情况。当使用 BCELoss 时,需要注意模型输出经过 sigmoid 激活函数转换为 [0, 1] 的概率形式。

  • 带 logits 的二元交叉熵损失(Binary Cross Entropy With Logits Loss,BCEWithLogitsLoss):
    torch.nn.BCEWithLogitsLoss() 是和 BCELoss 相似的损失函数,它同时应用了 sigmoid 函数和二元交叉熵损失。在使用 BCEWithLogitsLoss 时,不需要对模型输出手动应用 sigmoid 函数,因为该函数内部已经自动执行了这个操作。

  • 多类别交叉熵损失(Multiclass Cross Entropy Loss,CrossEntropyLoss):
    torch.nn.CrossEntropyLoss() 是用于多类别分类任务的损失函数。它将模型输出的每个类别的分数与真实标签进行比较,并计算交叉熵损失。CrossEntropyLoss 适用于每个样本只能属于一个类别的情况。注意,在使用 CrossEntropyLoss 前,通常需要确保模型输出经过 softmax 或 log softmax 函数。

  • 多标签二元交叉熵损失(Multilabel Binary Cross Entropy Loss):
    当每个样本可以属于多个类别时,我们可以使用二元交叉熵损失来处理多标签分类任务。对于每个样本,将模型输出的概率与真实标签进行比较,并计算每个标签的二元交叉熵损失。可以逐标签地对每个标签应用 BCELoss,或者使用 torch.nn.BCEWithLogitsLoss() 并将模型输出中的最后一个维度设置为标签数量。

3. 代码示例

1)二元交叉熵损失(BCELoss):

import torch
import torch.nn as nn

# 模型输出经过 sigmoid 函数处理
model_output = torch.sigmoid(model(input))
# 真实标签
target = torch.Tensor([0, 1, 1, 0])
# 创建损失函数对象
loss_fn = nn.BCELoss()
# 计算损失
loss = loss_fn(model_output, target)

2)带 logits 的二元交叉熵损失(BCEWithLogitsLoss):

import torch
import torch.nn as nn

# 模型输出未经过 sigmoid 函数处理
model_output = model(input)
# 真实标签
target = torch.Tensor([0, 1, 1, 0])
# 创建损失函数对象
loss_fn = nn.BCEWithLogitsLoss()
# 计算损失
loss = loss_fn(model_output, target)

3)多类别交叉熵损失(CrossEntropyLoss):

import torch
import torch.nn as nn

# 模型输出经过 softmax 函数处理
model_output = nn.functional.softmax(model(input), dim=1)
# 真实标签(每个样本只能属于一个类别)
target = torch.LongTensor([2, 1, 0])
# 创建损失函数对象
loss_fn = nn.CrossEntropyLoss()
# 计算损失
loss = loss_fn(model_output, target)

4)多标签二元交叉熵损失(Multilabel Binary Cross Entropy Loss):文章来源地址https://www.toymoban.com/news/detail-707781.html

import torch
import torch.nn as nn

# 模型输出未经过 sigmoid 函数处理
model_output = model(input)
# 真实标签
target = torch.Tensor([[0, 1], [1, 1], [1, 0], [0, 1]])
# 创建损失函数对象
loss_fn = nn.BCEWithLogitsLoss()
# 计算损失,将模型输出的最后一个维度设置为标签数量
loss = loss_fn(model_output, target)

到了这里,关于【深度学习】分类损失函数解析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【吴恩达·机器学习】第三章:分类任务:逻辑回归模型(交叉熵损失函数、决策边界、过拟合、正则化)

    博主简介: 努力学习的22级计算机科学与技术本科生一枚🌸 博主主页: @Yaoyao2024 每日一言🌼: 勇敢的人,不是不落泪的人,而是愿意含着泪继续奔跑的人。 ——《朗读者》 本系列博客文章是博主本人根据吴恩达老师2022年的机器学习课程所学而写,主要包括老师的核心讲义

    2024年02月19日
    浏览(59)
  • 损失函数(Loss Function)一文详解-分类问题常见损失函数Python代码实现+计算原理解析

    目录 前言 一、损失函数概述 二、损失函数分类 1.分类问题的损失函数

    2023年04月26日
    浏览(44)
  • 【深度学习】损失函数详解

    在机器学习中,损失函数是代价函数的一部分,而代价函数则是目标函数的一种类型。 损失函数(Loss Function): 用于定义单个训练样本与真实值之间的误差; 代价函数(Cost Function): 用于定义单个批次/整个训练集样本与真实值之间的误差; 目标函数(Objective Function): 泛指任意可

    2024年02月02日
    浏览(42)
  • 人工智能_机器学习065_SVM支持向量机KKT条件_深度理解KKT条件下的损失函数求解过程_公式详细推导_---人工智能工作笔记0105

    之前我们已经说了KKT条件,其实就是用来解决 如何实现对,不等式条件下的,目标函数的求解问题,之前我们说的拉格朗日乘数法,是用来对 等式条件下的目标函数进行求解. KKT条件是这样做的,添加了一个阿尔法平方对吧,这个阿尔法平方肯定是大于0的,那么 可以结合下面的文章去

    2024年02月04日
    浏览(43)
  • 【深度学习】002-损失函数:MSE、交叉熵、铰链损失函数(Hinge Loss)

    目录 前言 一、均方误差损失函数(The Mean-Squared Loss)       1.1、从线性回归模型导出均方误差函数       1.2、均方误差函数的使用场景       1.3、均方误差函数的一些讨论 2、交叉熵损失函数(The Cross-Entropy Loss)       2.1、从softmax运算到交叉熵       2.2、信息论

    2024年02月05日
    浏览(45)
  • 深度学习快速入门系列---损失函数

    在深度学习中,损失函数的作用是量化预测值和真实值之间的差异,使得网络模型可以朝着真实值的方向预测,损失函数通过衡量模型预测结果与真实标签之间的差异,反映模型的性能。同时损失函数作为一个可优化的目标函数,通过最小化损失函数来优化模型参数。在本篇

    2024年02月12日
    浏览(37)
  • 机器学习——损失函数(lossfunction)

    问:非监督式机器学习算法使用样本集中的标签构建损失函数。   答:错误 。非监督式机器学习算法不使用样本集中的标签构建损失函数。这是因为非监督式学习算法的目的是在没有标签的情况下发现数据集中的特定结构和模式,因此它们依赖于不同于监督式学习的算法。

    2024年02月04日
    浏览(45)
  • 深度学习中常用的损失函数(一) —— MSELoss()

            该函数叫做平均平方误差,简称均方误差。它的英文名是mean squared error,该损失函数是挨个元素计算的。该元素的公式如下:                                  其连个输入参数,第一个参数是输出的参数,第二个参数是与之对比的参数。        loss= torch.nn.MSE

    2024年02月12日
    浏览(51)
  • 深度学习:Pytorch常见损失函数Loss简介

    此篇博客主要对深度学习中常用的损失函数进行介绍,并结合Pytorch的函数进行分析,讲解其用法。 L1 Loss计算预测值和真值的平均绝对误差。 L o s s ( y , y ^ ) = ∣ y − y ^ ∣ Loss(y,hat{y}) = |y-hat{y}| L oss ( y , y ^ ​ ) = ∣ y − y ^ ​ ∣ Pytorch函数: 参数: size_average (bool, optional) –

    2024年02月13日
    浏览(43)
  • pytorch学习-线性神经网络——softmax回归+损失函数+图片分类数据集

            Softmax回归(Softmax Regression)是一种常见的多分类模型,可以用于将输入变量映射到多个类别的概率分布中。softmax回归是机器学习中非常重要并且经典的模型,虽然叫回归,实际上是一个分类问题         回归是估计一个连续值,分类是预测一个连续的类别  示例

    2024年02月15日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包