深入解析顺序表:揭开数据结构的奥秘,掌握顺序表的精髓

这篇具有很好参考价值的文章主要介绍了深入解析顺序表:揭开数据结构的奥秘,掌握顺序表的精髓。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


  • 💓 博客主页:江池俊的博客
  • ⏩ 收录专栏:数据结构探索
  • 👉专栏推荐:✅C语言初阶之路 ✅C语言进阶之路
  • 💻代码仓库:江池俊的代码仓库
  • 🔥编译环境:Visual Studio 2022
  • 🎉欢迎大家点赞👍评论📝收藏⭐

深入解析顺序表:揭开数据结构的奥秘,掌握顺序表的精髓,数据结构探索,数据结构,c语言,学习,经验分享,笔记,开发语言


🚀线性表

【维基百科】 线性表(英语:Linear List)是由n(n≥0)个数据元素(结点)a[0],a[1],a[2]…,a[n-1]组成的有限序列。

其中:

  • 数据元素的个数n定义为表的长度 = “list”.length() (“list”.length() = 0(表里没有一个元素)时称为空表)
  • 将非空的线性表(n>=1)记作:(a[0],a[1],a[2],…,a[n-1])
  • 数据元素a[i](0≤i≤n-1)只是个抽象符号,其具体含义在不同情况下可以不同

一个数据元素可以由若干个数据项组成。数据元素称为记录,含有大量记录的线性表又称为文件。这种结构具有下列特点:存在一个唯一的没有前驱的(头)数据元素;存在一个唯一的没有后继的(尾)数据元素;此外,每一个数据元素均有一个直接前驱和一个直接后继数据元素。

线性表(linear list)是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构,常见的线性表:顺序表、链表、栈、队列、字符串…

线性表在逻辑上是线性结构,也就说是连续的一条直线。但是在物理结构上并不一定是连续的,线性表在物理上存储时,通常以数组链式结构的形式存储。

深入解析顺序表:揭开数据结构的奥秘,掌握顺序表的精髓,数据结构探索,数据结构,c语言,学习,经验分享,笔记,开发语言


🚀顺序表

🚨概念及结构

【维基百科】 顺序表是在计算机内存中数组的形式保存的线性表,是指用一组地址连续的存储单元依次存储数据元素的线性结构,使得线性表中在逻辑结构上相邻的数据元素存储在相邻的物理存储单元中,即通过数据元素物理存储的相邻关系来反映数据元素之间逻辑上的相邻关系。

即:顺序表是用一段物理地址连续的存储单元依次存储数据元素的线性结构,一般情况下采用数组存储。在数组上完成数据的增删查改

🎈. 静态顺序表:使用定长数组存储元素。

深入解析顺序表:揭开数据结构的奥秘,掌握顺序表的精髓,数据结构探索,数据结构,c语言,学习,经验分享,笔记,开发语言

🎈. 动态顺序表:使用动态开辟的数组存储。

深入解析顺序表:揭开数据结构的奥秘,掌握顺序表的精髓,数据结构探索,数据结构,c语言,学习,经验分享,笔记,开发语言


🚀接口实现

静态顺序表只适用于确定知道需要存多少数据的场景。静态顺序表的定长数组导致N定大了,空间开多了浪费,开少了不够用。

所以现实中基本都是使用动态顺序表,根据需要动态的分配空间大小,所以下面我们实现动态顺序表

这里的接口其实就是 接口函数 ,这些 接口函数 提供了顺序表的各种基本操作,允许我们对顺序表进行 增、删、查、改 等操作。

📌有哪些接口呢

// 基本 增删查改 接口 --- 命名风格是跟着STL走的,方便后续学习STL
// 顺序表初始化
void SeqListInit(SL* psl);
// 检查空间,如果满了,进行增容 --> 扩容
void SLCheckCapacity(SL* psl);
// 顺序表尾插
void SeqListPushBack(SL* psl, SLDataType x);
// 顺序表头插
void SeqListPushFront(SL* psl, SLDataType x);
// 顺序表尾删
void SeqListPopBack(SL* psl);
// 顺序表头删
void SeqListPopFront(SL* psl);
// 顺序表查找
int SeqListFind(SL* psl, SLDataType x);
//顺序表的修改
void SeqListModify(SL* psl,int pos, SLDataType x);
// 顺序表在pos位置插入x(可以实现头插和尾插)
void SeqListInsert(SL* psl, int pos, SLDataType x);
// 顺序表删除pos位置的值(可以实现头删和尾删)
void SeqListErase(SL* psl, int pos);
// 顺序表打印
void SeqListPrint(SL* psl);
// 顺序表销毁
void SeqListDestroy(SL* psl);

接下来我将带着大家一 一实现这些接口。

📌准备工作

在写顺序表前,我们需要创建工程,这里为了让大家养成模块化的好习惯,我们尽量将代码分成三个文件来写。这里我打开的编译器是 vs 2022,在资源管理器的 头文件 中创建 SeqList.h 文件,此文件作用主要是为了存储各种头文件和接口函数的声明以及顺序表结构体的创建;在源文件中创建 SeqList.c 文件用来实现接口函数,Test.c 文件用来测试顺序表的各个接口。具体如下图所示:

深入解析顺序表:揭开数据结构的奥秘,掌握顺序表的精髓,数据结构探索,数据结构,c语言,学习,经验分享,笔记,开发语言
注意:

  • 为了能够在顺序表中方便地存储各种类型的数据,我们可以使用 typedef 将要存储的数据类型重命名为 SLDataType ,这样在定义顺序表的数据类型时只需要使用 SLDataType 就行了,修改数据类型时只需要修改 typedef 后面跟着的这个数据类型,这样就大大方便了对不同类型数据的存储。
  • 类似的,为了方便结构体的定义和使用,我们也可以使用 typedef 将结构体定义一个简单的别名为 SL
#pragma once

#include<stdio.h>
#include<stdlib.h> // NULL、size_t
#include<assert.h>

// 静态的顺序表:使用定长数组存储元素。
// 特点:如果满了就不让插入
// 缺点:N给小了不够用,给多了浪费,这个很难确定
//#define N 100
//typedef int SLDataType; // 给int取别名
//struct SeqList // 创建顺序表
//{
//	SLDataType a[N]; // 定长数组
//	int size; // 存储的有效数据的个数
//};

// 动态顺序表:使用动态开辟的数组存储。
//typedef double SLDatatype;
typedef int SLDataType; //重定义类型名称,方便顺序表对不同类型的数据的存储和操作
typedef struct SeqList // 创建顺序表
{
	SLDataType* a; //指向动态开辟的数组
	int size;       // 存储的有效数据的个数
	int capacity;   // 容量空间大小
}SL; //将结构体类型取别名为 SL

📌初始化

这里我们实现动态顺序表,所以刚开始时我们可以假设给定顺序表的大小为 4(即能存放4个元素),不够就扩容,顺序表中刚开始是没有元素的。

//顺序表初始化
void SeqListInit(SL* psl)
{
	//防止psl为空指针(即防止传错结构体地址)
	assert(psl);
	psl->a = (SLDataType*)malloc(sizeof(SLDataType) * 4);
	//判断能否成功开辟空间
	if (psl->a == NULL)
	{
		perror("malloc fail");//将系统错误信息输出到屏幕
		return;
	}
	psl->capacity = 4;
	psl->size = 0;
}

📌扩容

在后续对顺序表进行操作过程中我们会插入数据,如果顺序表空间不够,我们就需要使用 realloc 函数进行扩容。
这里newcapacity表示扩容后能存放的元素个数(即空间的容量),tmp表示的是扩容后的空间的地址,如果顺序表的空间为空,就给定能存放4个元素的空间;如果空间不够,就在原来空间的基础上,增加 1 倍的空间(这样也依然无法避免空间的部分浪费,所以就有了链表,后续文章我会为大家带来)。

// 扩容 ---> 检查空间,如果满了,进行增容
void SLCheckCapacity(SL* psl)
{
	if (psl->size == psl->capacity)
	{
		//如果没有空间或者空间不足,就扩容
		int newcapacity = (psl->capacity == 0 ? 4 : psl->capacity * 2);
		SLDataType* tmp = (SLDataType*)realloc(psl->a, sizeof(SLDataType) * newcapacity);
		if (tmp == NULL)
		{
			printf("realloc fail\n");
			exit(-1); //退出程序
		}
		psl->a = tmp;
		psl->capacity = newcapacity;
	}
}

📌顺序表打印

打印比较简单,这里我们只需要依次遍历每一个节点就行。

//打印
void SeqListPrint(SL* psl)
{
    //防止psl为空指针(即防止传错结构体地址)
	assert(psl);
	//遍历
	for (int i = 0; i < psl->size; i++)
	{
		printf("%d ", psl->a[i]);
	}
	printf("\n");
}

📌顺序表销毁

因为是动态开辟的,所以如果空间不用我们就需要销毁掉。如果不销毁会存在内存泄漏的风险,所以这里我们使用free函数释放开辟的动态空间,并把有效数据个数和容量空间都置为0

//销毁
void SeqListDestroy(SL* psl)
{
	assert(psl);
	free(psl->a);
	psl->a = NULL;
	psl->size = 0;
	psl->capacity = 0;
}

📌尾插

尾插就是在最后一个元素的后面插入一个元素(即在size下标位置处插入数据),但要注意的是当capacity空间满了就需要扩容,因此我们要调用SLCheckCapacity函数。

//尾插
void SeqListPushBack(SL* psl, SLDataType x)
{
	assert(psl);

	//psl->a[psl->size] = x;
	//psl->size++;

	SLCheckCapacity(psl); // 检查扩容

	psl->a[psl->size++] = x;

	//复用指定pos下标位置插入数据的函数
	//SeqListInsert(psl, psl->size, x);
}

📌尾删

尾删其实就是将顺序表最后一个数据删去,要实现这一操作其实只需要将有效数据个数减一就可以了(即size--),但是在尾删之前要先判断顺序表中是否有元素,如果没有元素就没有必要删了。

//尾删
void SeqListPopBack(SL* psl)
{
	assert(psl);

	//温柔的处理方式
	//if (psl->size > 0)
	//{
	//	psl->size--;
	//}
	//else
	//{
	//	printf("没有数据能够再删了!\n");
	//		exit(-1); //退出程序
	//}
	
	//暴力的处理方式
	assert(psl->size > 0);//确保顺序表中有数据
	psl->size--;

	//复用pos下标位置删除数据的函数
	//SeqListErase(psl, psl->size - 1);
}

📌头插

头插操作其实就是在顺序表下表为 0 的位置插入数据,然后 size++,但是在此之前要判断顺序表容量空间是否已满,所以要先调用 SLCheakCapacity 函数。深入解析顺序表:揭开数据结构的奥秘,掌握顺序表的精髓,数据结构探索,数据结构,c语言,学习,经验分享,笔记,开发语言

//头插
void SeqListPushFront(SL* psl, SLDataType x)
{
	assert(psl);
	SLCheckCapacity(psl);
	//挪动数据
	int end = psl->size -1;
	while (end >= 0)
	{
		psl->a[end + 1] = psl->a[end];
		end--;
	}
	psl->a[0] = x;
	psl->size++;

	//复用指定pos下标位置插入数据的函数
	//SeqListInsert(psl, 0, x);
}

📌头删

头删的实现其实只需要将顺序表开头后面的数据依次往前挪动,然后将 size-- 就可以了,这里要从前往后挪,如果从后往前挪数据会被覆盖。注意:这里与尾删类似,在头删之前要先判断顺序表中是否有元素,如果没有元素就没有必要删了。
深入解析顺序表:揭开数据结构的奥秘,掌握顺序表的精髓,数据结构探索,数据结构,c语言,学习,经验分享,笔记,开发语言

//头删
void SeqListPopFront(SL* psl)
{
	assert(psl);
	assert(psl->size > 0);//有数据才能删,没数据就会报错
	int begin = 1;
	while (begin < psl -> size)
	{
		psl->a[begin - 1] = psl->a[begin];
		begin++;
	}
	psl->size--;

	//复用pos效标位置删除数据的函数
	//SeqListErase(psl, 0);
}

📌指定pos下标位置插入数据

我们只需要将顺序表中pos位置到最后的数据依次往后挪动(从后往前挪),然后将pos下标位置的数据改为要插入的数据,最后 size++ 即可。但是我们依然要判断是否满容,所以在插入数据前要调用 SLCheakCapacity 函数。同时我们也要判断pos位置是否合理,防止越界访问。

//指定pos下标位置插入数据
void SeqListInsert(SL* psl, int pos, SLDataType x)
{
	assert(psl);
	//if (pos > psl->size || pos < 0)
	//{
	//	printf("pos的下标位置越界");
	//	return;
	//}
	//暴力的方式处理(pos下标不能越界)
	assert(pos >= 0 && pos <= psl->size);
	//如果没有空间或者空间不足,就扩容
	SLCheckCapacity(psl);
	//挪动数据
	int end = psl->size - 1;
	while (end >= pos)
	{
		psl->a[end + 1] = psl->a[end];
		end--;
	}
	psl->a[pos] = x;
	psl->size++;
}

📌删除pos位置的数据

与头删类似,我们只需要将pos位置后的数据依次往前挪动将pos位置处的数据覆盖,然后再 size-- 就可以了。但是要判断pos位置是否合理,防止越界访问。

//删除pos位置的数据(结合SeqListFind函数可以删除指定的数据)
void SeqListErase(SL* psl, int pos)
{
	assert(psl);
	assert(pos >= 0 && pos < psl->size);//pos位置需要有数据
    //挪动数据
	int begin = pos + 1;
	while (begin < psl->size)
	{
		psl->a[begin - 1] = psl->a[begin];
		begin++;
	}
	psl->size--;
}

📌查找

这个比较简单,我们只需要遍历一遍顺序表,查找相应数据,若找到,就返回下标,若没找到,就返回-1。

//查找,找到了返回下标,没找到返回-1
int SeqListFind(SL* psl, SLDataType x)
{
	assert(psl);
	for (int i = 0; i < psl->size; i++)
	{
		if (psl->a[i] == x)
		{
			return i;
		}
	}
	return -1;
}

📌修改pos位置的数据

通过pos下标直接修改

//修改pos位置的数据
void SeqListModify(SL* psl, int pos, SLDataType x)
{
	assert(psl);
	assert(pos >= 0 && pos < psl->size);

	psl->a[pos] = x;
}

🚀源码

🌴SeqList.h 文件

#pragma once

#include<stdio.h>
#include<stdlib.h>//NULL、size_t
#include<assert.h>


// 静态的顺序表:使用定长数组存储元素。
// 特点:如果满了就不让插入
// 缺点:N给小了不够用,给多了浪费,这个很难确定
//#define N 10000
//typedef int SLDatatype; // 给int取别名
//struct SeqList // 创建顺序表
//{
//	SLDatatype a[N]; // 定长数组
//	int size; // 存储的有效数据的个数
//};
//静态顺序表只适用于确定知道需要存多少数据的场景。静态顺序表的定长数组导致N定大了,空间开多了浪
//费,开少了不够用。所以现实中基本都是使用动态顺序表,根据需要动态的分配空间大小,所以下面我们实
//现动态顺序表。


// 动态顺序表:使用动态开辟的数组存储。
//typedef double SLDatatype;
typedef int SLDataType; //重定义类型名称,方便顺序表对不同类型的数据的存储和操作
typedef struct SeqList
{
	SLDataType* a; //指向动态开辟的数组
	int size;       // 存储的有效数据的个数
	int capacity;   // 容量空间大小
}SL;

// 基本 增删查改 接口 --- 命名风格是跟着STL走的,方便后续学习STL
// 顺序表初始化
void SeqListInit(SL* psl);

// 检查空间,如果满了,进行增容
void SLCheckCapacity(SL* psl);

// 顺序表尾插
void SeqListPushBack(SL* psl, SLDataType x);
// 顺序表尾删
void SeqListPopBack(SL* psl);
// 顺序表头插
void SeqListPushFront(SL* psl, SLDataType x);
// 顺序表头删
void SeqListPopFront(SL* psl);
// 顺序表查找
int SeqListFind(SL* psl, SLDataType x);
// 顺序表在pos位置插入x(可以实现头插和尾插)
void SeqListInsert(SL* psl, int pos, SLDataType x);
// 顺序表删除pos位置的值(可以实现头删和尾删)
void SeqListErase(SL* psl, int pos);

// 顺序表打印
void SeqListPrint(SL* psl);
// 顺序表销毁
void SeqListDestroy(SL* psl);

//顺序表的修改
void SeqListModify(SL* psl, int pos, SLDataType x);

🌴SeqList.c 文件

#include"SeqList.h"

//void SeqListInit(SL* psl)
//{
//	psl->a = NULL;
//	psl->size = 0;
//	psl->capacity = 0;
//}

//顺序表初始化
void SeqListInit(SL* psl)
{
	//防止psl为空指针(即防止传错结构体地址)
	assert(psl);
	psl->a = (SLDataType*)malloc(sizeof(SLDataType) * 4);
	//判断能否成功开辟空间
	if (psl->a == NULL)
	{
		perror("malloc fail");//将系统错误信息输出到屏幕
		return;
	}

	psl->capacity = 4;
	psl->size = 0;
}
//销毁
void SeqListDestroy(SL* psl)
{
	assert(psl);
	free(psl->a);
	psl->a = NULL;
	psl->size = 0;
	psl->capacity = 0;
}
//打印
void SeqListPrint(SL* psl)
{
	assert(psl);
	for (int i = 0; i < psl->size; i++)
	{
		printf("%d ", psl->a[i]);
	}
	printf("\n");
}
// 检查空间,如果满了,进行增容
void SLCheckCapacity(SL* psl)
{
	assert(psl);
	if (psl->size == psl->capacity)
	{
		//如果没有空间或者空间不足,就扩容
		int newcapacity = (psl->capacity == 0 ? 4 : psl->capacity * 2);
		SLDataType* tmp = (SLDataType*)realloc(psl->a, sizeof(SLDataType) * newcapacity);
		if (tmp == NULL)
		{
			printf("realloc fail\n");
			exit(-1);//退出程序
		}

		psl->a = tmp;
		psl->capacity = newcapacity;
	}
}
//尾插
void SeqListPushBack(SL* psl, SLDataType x)
{
	assert(psl);

	//psl->a[psl->size] = x;
	//psl->size++;
	
	SLCheckCapacity(psl);//检查扩容

	psl->a[psl->size++] = x;

	//复用指定pos下标位置插入数据的函数
	//SeqListInsert(psl, psl->size, x);
}
//尾删
void SeqListPopBack(SL* psl)
{
	assert(psl);

	//温柔的处理方式
	//if (psl->size > 0)
	//{
	//	psl->size--;
	//}
	//else
	//{
	//	printf("没有数据能够再删了!\n");
	//		exit(-1);
	//}
	
	//暴力的处理方式
	assert(psl->size > 0);//确保顺序表中有数据
	psl->size--;

	//复用pos下标位置删除数据的函数
	//SeqListErase(psl, psl->size - 1);
}
//头插
void SeqListPushFront(SL* psl, SLDataType x)
{
	assert(psl);
	SLCheckCapacity(psl);
	//挪动数据
	int end = psl->size -1;
	while (end >= 0)
	{
		psl->a[end + 1] = psl->a[end];
		end--;
	}
	psl->a[0] = x;
	psl->size++;

	//复用指定pos下标位置插入数据的函数
	//SeqListInsert(psl, 0, x);
}
//头删
void SeqListPopFront(SL* psl)
{
	assert(psl);
	assert(psl->size > 0);//有数据才能删,没数据就会报错
	int begin = 1;
	while (begin < psl -> size)
	{
		psl->a[begin - 1] = psl->a[begin];
		begin++;
	}
	psl->size--;

	//复用pos效标位置删除数据的函数
	//SeqListErase(psl, 0);
}
//查找,找到了返回下标,没找到返回-1
int SeqListFind(SL* psl, SLDataType x)
{
	assert(psl);
	for (int i = 0; i < psl->size; i++)
	{
		if (psl->a[i] == x)
		{
			return i;
		}
	}
	return -1;
}
//指定pos下标位置插入数据
void SeqListInsert(SL* psl, int pos, SLDataType x)
{
	assert(psl);
	//if (pos > psl->size || pos < 0)
	//{
	//	printf("pos的下标位置越界");
	//	return;
	//}
	//暴力的方式处理(pos下标不能越界)
	assert(pos >= 0 && pos <= psl->size);
	//如果没有空间或者空间不足,就扩容
	SLCheckCapacity(psl);
	//挪动数据
	int end = psl->size - 1;
	while (end >= pos)
	{
		psl->a[end + 1] = psl->a[end];
		end--;
	}
	psl->a[pos] = x;
	psl->size++;
}

//删除pos位置的数据(结合SeqListFind函数可以删除指定的数据)
void SeqListErase(SL* psl, int pos)
{
	assert(psl);
	assert(pos >= 0 && pos < psl->size);//pos位置需要有数据
    //挪动数据
	int begin = pos + 1;
	while (begin < psl->size)
	{
		psl->a[begin - 1] = psl->a[begin];
		begin++;
	}
	psl->size--;
}

//修改pos位置的数据
void SeqListModify(SL* psl, int pos, SLDataType x)
{
	assert(psl);
	assert(pos >= 0 && pos < psl->size);

	psl->a[pos] = x;

}

🌴Test.c 文件

#define _CRT_SECURE_NO_WARNINGS 1

#include "SeqList.h"

int main()
{
	SL s;
	SeqListInit(&s);
	SeqListPushBack(&s, 1);
	SeqListPushBack(&s, 2);
	SeqListPushBack(&s, 3);
	SeqListPushBack(&s, 4);
	SeqListPushBack(&s, 5);
	SeqListPushBack(&s, 6);//尾插
	SeqListPopBack(&s);//尾删
	SeqListPushFront(&s, 0);//头插
	SeqListPopFront(&s);//头删
	SeqListInsert(&s, 2, 8);//指定pos下标为2的位置插入数据8

	SeqListPrint(&s);//打印
	SeqListDestroy(&s);//销毁

	return 0;
}

💨 今天的分享就到这里,如果觉得博主的文章还不错的话, 请👍三连支持一下博主哦🤞文章来源地址https://www.toymoban.com/news/detail-708129.html

到了这里,关于深入解析顺序表:揭开数据结构的奥秘,掌握顺序表的精髓的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构】 顺序表详解!(源码+解析)

    🎥 屿小夏 : 个人主页 🔥个人专栏 : 数据结构解析 🌄 莫道桑榆晚,为霞尚满天! ​ 什么是数据结构?我们为什么要学数据结构?数据结构中的顺序表长什么样子?它是怎么运用? ​ 本期我们将对这些一一讲解,彻底明白数据结构的重要性,以及顺序表是一种什么的数据

    2024年02月06日
    浏览(46)
  • 探索数据结构:顺序串与链式串的深入理解

    ✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:数据结构与算法 贝蒂的主页:Betty’s blog 串是一种特殊的 顺序表 ,即每一个元素都是单独一个 字符 。在C语言中我们学习的字符串便是串的一种,它在我们的数据搜索与文本编译中起着不

    2024年04月17日
    浏览(48)
  • 【数据结构】顺序表:与时俱进的结构解析与创新应用

      欢迎来到白刘的领域     Miracle_86.-CSDN博客           系列专栏     数据结构与算法 先赞后看,已成习惯    创作不易,多多支持! 目录 一、数据结构的概念 二、顺序表(Sequence List) 2.1 线性表的概念以及结构 2.2 顺序表分类 2.2.1 顺序表和数组的区别 2.2.2 顺序表的分类

    2024年04月23日
    浏览(29)
  • 【图解数据结构】顺序表实战指南:手把手教你详细实现(超详细解析)

    🌈个人主页: 聆风吟 🔥系列专栏: 图解数据结构、算法模板 🔖少年有梦不应止于心动,更要付诸行动。 线性表(linear list):线性表是一种数据结构,由n个具有相同数据类型的元素构成一个有限序列。 线性表可以用数组、链表、栈等方式实现,常见的线性表有数组、链

    2024年01月22日
    浏览(68)
  • 数据结构实验---顺序表的合并---链表的基本操作---重点解析约瑟夫问题

    实验的写法多种多样,但本文并未采用 #define 定义容量的写法,这样写已经是很老旧过时的写法。所有实验主体采用均为动态开辟,后续如果利用 C++ 来写或许会应用更多语法… 本篇展示数据结构的两个实验 其中,重点分析约瑟夫问题 实验中代码的命名风格等均与下方博客

    2024年02月16日
    浏览(62)
  • 概念解析 | 隐式神经表示:揭开神经网络黑盒的奥秘

    注1:本文系“概念解析”系列之一,致力于简洁清晰地解释、辨析复杂而专业的概念。本次辨析的概念是: 隐式神经表示(Implicit Neural Representations) 近年来,神经网络在各种任务上取得了惊人的进步,但其内部表示方式依然难以解读,被称为“黑盒”。 隐式神经表示(Implicit Neural Rep

    2024年02月13日
    浏览(46)
  • “深入解析JVM内部结构与工作原理:揭秘Java虚拟机的奥秘“

    标题:深入解析JVM内部结构与工作原理:揭秘Java虚拟机的奥秘 摘要:本文将深入探讨Java虚拟机(JVM)的内部结构和工作原理,帮助开发者更好地理解JVM的运行机制,从而提高Java程序的性能和稳定性。 正文: 一、JVM概述 Java虚拟机(Java Virtual Machine)是Java程序的运行环境,

    2024年02月11日
    浏览(45)
  • C语言---数据结构实验---顺序表的合并---链表的基本操作---重点解析约瑟夫问题

    实验的写法多种多样,但本文并未采用 #define 定义容量的写法,这样写已经是很老旧过时的写法。所有实验主体采用均为动态开辟,后续如果利用 C++ 来写或许会应用更多语法… 本篇展示数据结构的两个实验 其中,重点分析约瑟夫问题 实验中代码的命名风格等均与下方博客

    2024年02月16日
    浏览(70)
  • 深入理解Java线程池ThreadPoolExcutor实现原理、数据结构和算法(源码解析)

    什么是线程池?         线程池主要是为了解决执行新任务执行时,应用程序为减少为任务创建一个新线程和任务执行完毕时销毁线程所带来的开销。通过线程池,可以在项目初始化时就创建一个线程集合,然后在需要执行新任务时重用这些线程而不是每次都新建一个线

    2024年02月07日
    浏览(45)
  • 数据结构--》解锁数据结构中树与二叉树的奥秘(一)

            数据结构中的树与二叉树,是在建立非线性数据结构方面极为重要的两个概念。它们不仅能够模拟出生活中各种实际问题的复杂关系,还常被用于实现搜索、排序、查找等算法,甚至成为一些大型软件和系统中的基础设施。         无论你是初学者还是进阶者

    2024年02月08日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包