LeetCode——动态规划篇(一)

这篇具有很好参考价值的文章主要介绍了LeetCode——动态规划篇(一)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

刷题顺序及思路来源于代码随想录,网站地址:https://programmercarl.com 

目录

509. 斐波那契数 - 力扣(LeetCode)

70. 爬楼梯 - 力扣(LeetCode)

746. 使用最小花费爬楼梯 - 力扣(LeetCode)

62. 不同路径 - 力扣(LeetCode)

 63. 不同路径 II - 力扣(LeetCode)


509. 斐波那契数 - 力扣(LeetCode)

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

给定 n ,请计算 F(n) 。

输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1
package com.light.code.leetcode.dp;

import java.util.Scanner;

/**
 * @author light
 * @Description 斐波那契数列
 * F(0) = 0,F(1) = 1
 * F(n) = F(n - 1) + F(n - 2),其中 n > 1,给定 n ,请计算 F(n) 。
 * @create 2023-09-13 9:28
 */
public class FibTest {
	public static void main(String[] args) {
		Scanner input=new Scanner(System.in);
		int n=input.nextInt();
		System.out.println(fib(n));
	}
	public int fib(int n) {  //动态规划解法
        if(n<=1){
            return n;
        }
        int dp[]=new int[n+1];  //1、确定dp数组含义:第i个数的斐波那契数值为df[i]
        dp[0]=0;  //3、初始化递推公式
        dp[1]=1;
        for(int i=2;i<=n;i++){  //4、遍历顺序
            dp[i]=dp[i-1]+dp[i-2]; //2、确定递推公式
        }
        return dp[n];
        //5、如果有问题打印dp数组
    }
}

70. 爬楼梯 - 力扣(LeetCode)

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

import java.util.Scanner;

/**
 * @author light
 * @Description 爬楼梯
 *
 * @create 2023-09-13 9:36
 */
public class ClimbStairsTest {
	public static void main(String[] args) {
		Scanner input=new Scanner(System.in);
		int n=input.nextInt();
		System.out.println(climbStairs(n));
	}
	 public int climbStairs(int n) {
        if(n<=2){
            return n;
        }
        //确定dp数组及下标含义 dp[i]:爬到第i阶楼梯有dp[i]种方法
        int[] dp=new int[n+1];
        //确定递推公式--->dp[i]=dp[i-2]+dp[i-1]
        //初始化dp数组 
        dp[1]=1;
        dp[2]=2;
        for(int i=3;i<=n;i++){
            dp[i]=dp[i-1]+dp[i-2];
        }

        return dp[n];

    }
}

746. 使用最小花费爬楼梯 - 力扣(LeetCode)

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。

import java.util.Scanner;

/**
 * @author light
 * @Description 最小花费爬楼梯
 *
 * @create 2023-09-13 10:02
 */
public class MinCostClimbingStairsTest {
	public static void main(String[] args) {
		Scanner input=new Scanner(System.in);
		int n=input.nextInt();
		int[] num=new int[n];
		for (int i = 0; i < n; i++) {
			num[i]=input.nextInt();
		}
		System.out.println(minCostClimbingStairs(num));
	}
	 public int minCostClimbingStairs(int[] cost) {
         //1 定义dp数组并确认其含义dp[i] 爬到第i阶台阶的最低花费
        int[] dp=new int[cost.length+1];
        //3 初始化dp数组
        dp[0]=0;
        dp[1]=0;
        //4 确认遍历顺序
        for(int i=2;i<=cost.length;i++){
             //2 确认转移矩阵 
            dp[i]=Math.min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }
        return dp[cost.length];
    }
}

62. 不同路径 - 力扣(LeetCode)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

LeetCode——动态规划篇(一),做题总结,leetcode,动态规划,算法,Java

import java.util.Scanner;

/**
 * @author light
 * @Description 不同路径
 * 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
 *
 * 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
 *
 * 问总共有多少条不同的路径?
 *
 * @create 2023-09-13 10:33
 */
public class UniquePathsTest {
	public static void main(String[] args) {
		Scanner input=new Scanner(System.in);
		int m=input.nextInt();
		int n=input.nextInt();
		System.out.println(uniquePaths(m, n));

	}
	  public int uniquePaths(int m, int n) {
        //确定dp数组及其含义 do[i][j]:到位置为(i,j)的格子有几条路径
        int[][] dp=new int[m][n];
        //初始化dp数组
        for(int i=0;i<m;i++){
            dp[i][0]=1;//列
        }
        for(int j=0;j<n;j++){
            dp[0][j]=1; //行
        }
        //确认遍历顺序
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                //确定转移矩阵
                dp[i][j]=dp[i-1][j]+dp[i][j-1];
            }
        }

        return dp[m-1][n-1];

    }
}

 63. 不同路径 II - 力扣(LeetCode)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

LeetCode——动态规划篇(一),做题总结,leetcode,动态规划,算法,Java

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m=obstacleGrid.length;
        int n=obstacleGrid[0].length;
        //确定dp数组及其含义 
        // dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。
        int[][] dp=new int[m][n];
        //如果在起点或终点出现了障碍,直接返回0
        if(obstacleGrid[0][0]==1||obstacleGrid[m-1][n-1]==1){
            return 0;
        }
        //初始化dp数组
        for(int i=0;i<n&&obstacleGrid[0][i]==0;i++){
            dp[0][i]=1;
        }
        for(int i=0;i<m&&obstacleGrid[i][0]==0;i++){
            dp[i][0]=1;
        }

        //遍历顺序
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                //确定状态转移方程
                if(obstacleGrid[i][j]==0){
                    dp[i][j]=dp[i-1][j]+dp[i][j-1];
                }
            }
        }
        return dp[m-1][n-1];
    }
}

 文章来源地址https://www.toymoban.com/news/detail-708442.html

 

到了这里,关于LeetCode——动态规划篇(一)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【算法|动态规划No.17】leetcode64. 最小路径和

    个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月07日
    浏览(45)
  • 【算法|动态规划系列No.5】leetcode62. 不同路径

    个人主页:平行线也会相交 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 平行线也会相交 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月12日
    浏览(43)
  • 【算法|动态规划No.6】leetcode63. 不同路径Ⅱ

    个人主页:平行线也会相交 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 平行线也会相交 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月16日
    浏览(48)
  • leetcode877. 石子游戏(动态规划-java)

    来源:力扣(LeetCode) 链接:https://leetcode.cn/problems/stone-game Alice 和 Bob 用几堆石子在做游戏。一共有偶数堆石子,排成一行;每堆都有 正 整数颗石子,数目为 piles[i] 。 游戏以谁手中的石子最多来决出胜负。石子的 总数 是 奇数 ,所以没有平局。 Alice 和 Bob 轮流进行,Alic

    2024年02月10日
    浏览(56)
  • leetCode 131.分割回文串 + 动态规划 + 回溯算法 + 优化 + 图解 + 笔记

    我的往期文章: leetCode 647.回文子串 动态规划 + 优化空间 / 中心扩展法 + 双指针-CSDN博客 https://blog.csdn.net/weixin_41987016/article/details/133883091?spm=1001.2014.3001.5501 leetCode 131.分割回文串 + 回溯算法 + 图解 + 笔记-CSDN博客 https://blog.csdn.net/weixin_41987016/article/details/134700907?spm=1001.2014.3001

    2024年02月05日
    浏览(52)
  • 【算法|动态规划No.15】leetcode1035. 不相交的线

    个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月06日
    浏览(42)
  • 【算法|动态规划No.12】leetcode152. 乘积最大子数组

    个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月08日
    浏览(43)
  • 【算法|动态规划No.7】leetcode300. 最长递增子序列

    个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月07日
    浏览(42)
  • 【算法|动态规划No30】leetcode5. 最长回文子串

    个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月08日
    浏览(37)
  • 【leetcode刷题之路】剑指Offer(4)——分治+排序算法+动态规划

    8 分治算法 8.1 【递归】剑指 Offer 07 - 重建二叉树 https://leetcode.cn/problems/zhong-jian-er-cha-shu-lcof/   前序遍历是根左右,中序遍历是左根右,这也就意味着前序遍历的第一个节点是整棵树的根节点,顺着这个节点找到它在中序遍历中的位置,即为in_root,那么in_root左边的都在左子

    2024年02月11日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包