向量与矩阵范数的详细解读

这篇具有很好参考价值的文章主要介绍了向量与矩阵范数的详细解读。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、向量

  • L0范数:向量中非零元素的个数,也称为0范数
  • L1范数:为绝对值之和,也称为范数或者1范数
  • L2范数:通常意义上的模,也称为2范数
  • p范数:即向量元素绝对值的 p p p次方和的 1 / p 1/p 1/p次幂
  • ∞ \infty 范数:取向量的最大值
  • − ∞ -\infty 范数:取向量的最小值

假设有向量 x = ( x 1 , x 2 , … , x n ) T x = (x_1,x_2,\dots,x_n)^T x=(x1,x2,,xn)T,向量的范数有:
∣ ∣ x ∣ ∣ 1 = ∣ x 1 ∣ + ∣ x 2 ∣ + ⋯ + ∣ x n ∣ ||x||_1 = |x_1| + |x_2| + \dots + |x_n| ∣∣x1=x1+x2++xn

∣ ∣ x ∣ ∣ 2 = ( ∣ x 1 ∣ 2 + ∣ x 2 ∣ 2 + ⋯ + ∣ x n ∣ 2 ) 1 2 ||x||_2 = (|x_1|^2 + |x_2|^2 + \dots + |x_n|^2)^{\frac{1}{2}} ∣∣x2=(x12+x22++xn2)21

∣ ∣ x ∣ ∣ p = ( ∣ x 1 ∣ p + ∣ x 2 ∣ p + ⋯ + ∣ x n ∣ p ) 1 p ||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}} ∣∣xp=(x1p+x2p++xnp)p1

∣ ∣ x ∣ ∣ ∞ = max ⁡ { ∣ x 1 ∣ + ∣ x 2 ∣ + ⋯ + ∣ x n ∣ } ||x||_{\infty} = \max\{|x_1| + |x_2| + \dots + |x_n|\} ∣∣x=max{x1+x2++xn}

∣ ∣ x ∣ ∣ − ∞ = min ⁡ { ∣ x 1 ∣ + ∣ x 2 ∣ + ⋯ + ∣ x n ∣ } ||x||_{-\infty} = \min\{|x_1| + |x_2| + \dots + |x_n|\} ∣∣x=min{x1+x2++xn}

二、矩阵

矩阵范数主要有以下三类,切记,三类范数不一样!!

2.1、诱导范数

又称为算子范数,定义矩阵A位于矩阵空间 R m × n \mathbb{R}^{m\times n} Rm×n
∣ ∣ x ∣ ∣ = max ⁡ { ∣ ∣ A x ∣ ∣ ; x ∈ R n , ∣ ∣ x ∣ ∣ = 1 } = m a x { ∣ ∣ A x ∣ ∣ ∣ ∣ x ∣ ∣ , x ∈ R n , x ≠ 0 } ||x||= \max\{||Ax||;x\in \mathbb{R}^n,||x||=1 \} = max\left\{ \frac{||Ax||}{||x||}, x\in \mathbb{R}^n,x\ne 0 \right\} ∣∣x∣∣=max{∣∣Ax∣∣;xRn,∣∣x∣∣=1}=max{∣∣x∣∣∣∣Ax∣∣,xRn,x=0}
常用诱导范数为p范数,也称为 L p L_p Lp 范数
∣ ∣ A ∣ ∣ p = m a x { ∣ ∣ A x ∣ ∣ p ∣ ∣ x ∣ ∣ p , x ≠ 0 } ||A||_p = max\left\{ \frac{||Ax||_p}{||x||_p} ,x\ne 0 \right\} ∣∣Ap=max{∣∣xp∣∣Axp,x=0}
0范数:矩阵中非零元素的个数。

1范数又称为列范数
∣ ∣ A ∣ ∣ 1 = max ⁡ ∑ i = 1 m ∣ a i j ∣ , 1 ≤ j ≤ n ||A||_1 = \max \sum_{i=1}^m |a_{ij}|,1 \le j \le n ∣∣A1=maxi=1maij,1jn
无穷范数又称为行范数
∣ ∣ A ∣ ∣ ∞ = max ⁡ ∑ j = 1 n ∣ a i j ∣ , 1 ≤ i ≤ n ||A||_\infty = \max \sum_{j=1}^n |a_{ij}|,1 \le i \le n ∣∣A=maxj=1naij,1in
2范数又称为谱范数,矩阵的谱范数为矩阵的最大奇异值
∣ ∣ A ∣ ∣ s p e c = ∣ ∣ A ∣ ∣ 2 = σ m a x ( A ) = λ m a x ( A T A ) ||A||_{spec} = ||A||_{2} = \sigma_{max}(A) = \sqrt{\lambda_{max}(A^TA)} ∣∣Aspec=∣∣A2=σmax(A)=λmax(ATA)
σ m a x \sigma_{max} σmax 表示求矩阵的最大奇异值,spec是谱的意思

2.2、元素范数

m × n m \times n m×n 矩阵先按照列堆栈的形式,排列成一个 m n × 1 mn \times 1 mn×1 向量,然后采用向量的范数定义,即得到矩阵的范数
∣ ∣ A ∣ ∣ P = ( ∑ i = 1 m ∑ j = 1 n ∣ a i j ∣ p ) 1 p ||A||_P = \left( \sum_{i=1}^m\sum_{j=1}^n |a_{ij}|^p \right)^\frac{1}{p} ∣∣AP=(i=1mj=1naijp)p1
1范数又称为和范数或者L1范数
∣ ∣ A ∣ ∣ 1 = ∑ i = 1 m ∑ j = 1 n ∣ a i j ∣ ||A||_1 = \sum_{i=1}^m\sum_{j=1}^n |a_{ij}| ∣∣A1=i=1mj=1naij
2范数又称为Forbenius范数
∣ ∣ A ∣ ∣ F = ∣ ∣ A ∣ ∣ 2 = ( ∑ i = 1 m ∑ j = 1 n ∣ a i j ∣ 2 ) 1 2 = t r ( A H A ) ||A||_F = ||A||_2 = \left( \sum_{i=1}^m\sum_{j=1}^n |a_{ij}|^2 \right)^\frac{1}{2} = \sqrt{tr({A^HA})} ∣∣AF=∣∣A2=(i=1mj=1naij2)21=tr(AHA)
∞ \infty 范数又称为最大范数
∣ ∣ A ∣ ∣ p = max ⁡ { ∣ a i j ∣ } ||A||_p = \max\{ |a_{ij}| \} ∣∣Ap=max{aij}

2.3、Schatten范数

用矩阵的奇异值定义的范数,令矩阵的奇异值组成一个向量 σ = [ σ 1 σ 2 … σ k ] \sigma = \begin{bmatrix} \sigma_1 & \sigma_2 & \dots & \sigma_k \end{bmatrix} σ=[σ1σ2σk] , k = min ⁡ ( m , n ) k=\min(m,n) k=min(m,n)

p范数定义如下
∣ ∣ A ∣ ∣ p = ∣ ∣ σ ∣ ∣ p = ( ∑ i = 1 k σ i p ) 1 p ||A||_p = ||\sigma||_p = (\sum_{i=1}^k \sigma_i^{p})^\frac{1}{p} ∣∣Ap=∣∣σp=(i=1kσip)p1
p=1,也称为核范数,为矩阵奇异值之和
∣ ∣ A ∣ ∣ 1 = ∑ i = 1 k σ i = t r ( A H A ) ||A||_1 =\sum_{i=1}^k \sigma_i = tr(\sqrt{A^HA}) ∣∣A1=i=1kσi=tr(AHA )
p=2,Schattern范数与Frobenius等价

∣ ∣ A ∣ ∣ 1 = ( ∑ i = 1 k σ i 2 ) 1 2 = t r ( A H A ) = ( ∑ i = 1 m ∑ j = 1 n ∣ a i j ∣ 2 ) 1 2 ||A||_1 =(\sum_{i=1}^k \sigma_i^{2})^\frac{1}{2} = \sqrt{tr(A^HA)} = \left(\sum_{i=1}^m\sum_{j=1}^n |a_{ij}|^2 \right)^\frac{1}{2} ∣∣A1=(i=1kσi2)21=tr(AHA) =(i=1mj=1naij2)21

p= ∞ \infty ,Schattern范数与谱范数相同

∣ ∣ A ∣ ∣ ∞ = σ m a x ( A ) ||A||_\infty = \sigma_{max}(A) ∣∣A=σmax(A)文章来源地址https://www.toymoban.com/news/detail-708705.html

到了这里,关于向量与矩阵范数的详细解读的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 证明矩阵A二范数的平方等于A^T*A的二范数

    定理: 对于任意的矩阵 A ∈ R n × m A in R^{ntimes m} A ∈ R n × m ,有 ∥ A ∥ 2 2 = ∥ A T A ∥ 2 left|Aright|_2^2=left|A^TAright|_2 ∥ A ∥ 2 2 ​ = ​ A T A ​ 2 ​ 证明: 假设矩阵 A T A A^TA A T A 最大特征值为 λ lambda λ ,即 ∥ A ∥ 2 2 = λ left|Aright|_2^2=lambda ∥ A ∥ 2 2 ​ = λ ,设

    2024年02月04日
    浏览(28)
  • 【线性代数与矩阵论】范数理论

    2023年11月16日 向量的长度也称为向量的二范数 [!quote]- 长度的定理 设 x , y , z ∈ C n    ,    λ ∈ C {x,y,zin mathbb C^n ,,,,, lambdain mathbb C} x , y , z ∈ C n , λ ∈ C 非负性:长度大于等于 0 {0} 0 ,仅当向量为 0 {0} 0 时取等。 齐次性: ∣ ∣ λ x ∣ ∣ = ∣ λ ∣ ⋅ ∣ ∣ x ∣

    2024年01月22日
    浏览(29)
  • 【矩阵论】7. 范数理论——基本概念——向量范数与矩阵范数

    矩阵论的所有文章,主要内容参考北航赵迪老师的课件 [注]由于矩阵论对计算机比较重要,所以选修了这门课,但不是专业搞数学的,所以存在很多口语化描述,而且对很多东西理解不是很正确与透彻,欢迎大家指正。我可能间歇性忙,但有空一定会回复修改的。 矩阵论 1

    2023年04月23日
    浏览(32)
  • 计算方法 | 范数(向量:1范数、2范数、无穷范数;矩阵:行范数、列范数)

    0范数: 向量中非零元素的个数。 1范数: 为绝对值之和。 2范数: 通常意义上的模。 无穷范数:取向量的最大值。 行范数:矩阵中每行绝对值之和的最大值 列范数:矩阵中每列绝对值之和的最大值 范数对于数学的意义?1范数、2范数、无穷范数_yangpan011的博客-CSDN博客_无穷

    2024年02月15日
    浏览(27)
  • 矩阵分析与计算学习记录-向量范数与矩阵范数

    本章知识重点: 向量范数:定义、性质、等价性、分析性质 矩阵范数:定义、算子范数 矩阵范数与向量范数的相容性 矩阵的普半径及应用:普半径、矩阵序列及级数中的应用 矩阵的条件数及应用:矩阵的条件数、误差估计中的应用 范数,是具有“长度”概念的函数。 在线

    2024年02月05日
    浏览(36)
  • L1范数,L2范数,L2,1范数(向量范数、矩阵范数、正则化)

    参考文章如下:https://blog.csdn.net/lqzdreamer/article/details/79676305                          https://blog.csdn.net/lqzdreamer/article/details/79676305         一般常用范数来衡量向量,向量的Lp范数定义为:          Lp范数示意图:         从图中可以看出,p的取值在 [0,1) 之间,范数

    2023年04月09日
    浏览(27)
  • 用python实现矩阵和向量的范数(包括一范数,二范数,无穷范数)

    首先,导入需要用到的库: 创建一个矩阵和一个向量并输出: 计算矩阵的第一范数: 计算矩阵的第二范数: 计算矩阵的无穷范数: 计算向量的第一范数: 计算向量的第二范数: 计算向量的无穷范数: 完整代码如下:

    2024年04月22日
    浏览(24)
  • 3.3 向量与矩阵的范数

      要学习向量与矩阵的范数,我会采取以下几个步骤: 了解基本概念:首先,我会了解向量和矩阵的范数的基本概念和定义,以及它们的性质和特点,这是理解和掌握范数的基础。 学习具体算法:其次,我会学习具体的算法和计算方法,如计算向量的L1、L2、无穷范数,计算

    2023年04月22日
    浏览(23)
  • 矩阵和向量的各种范数(定义 + 例题)

    矩阵的不同范数的定义如下: 1. 1范数(L1范数):矩阵的每一列的绝对值之和中的最大值。 2. 2范数(L2范数):矩阵的特征值中的最大值的平方根。 3. 无穷范数:矩阵的每一行的绝对值之和中的最大值。 4. F范数(Frobenius范数):矩阵的每个元素的平方和的平方根。 对于向

    2024年02月05日
    浏览(30)
  • 线性代数的学习和整理6:如何表示向量/矩阵? 矩阵就是向量组,矩阵的本质是什么?

    目录 0 参考的知识点和目录 1 向量 1.1 向量的概念 1.2 向量如何表示 1.3 向量/矩阵的优秀表示方法:即向量空间内的有向线段 2 矩阵 2.1 矩阵就是多个列向量的集合/合并( 而不是 +),矩阵就是多个列向量的一种简化书写方式? 2.2 矩阵的加法  =等价于=  向量的加法 2.3 矩阵

    2024年02月07日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包