入坑CTF——RSA解密之大素数分解和共模攻击的Python实现

这篇具有很好参考价值的文章主要介绍了入坑CTF——RSA解密之大素数分解和共模攻击的Python实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

ctf rsa解密,密码学,密码学#RSA,网络安全,密码学,python

目录

前言

RSA的加密和解密过程

RSA解密之大素数分解:

RSA解密之共模攻击:

Python引入Crypto时遇到的问题,及解决方法:

第一步:安装

第二步:到:【Project的名称】\venv\Lib\site-packages的路径下更改文件夹的名称:

第三步:重新Run一遍程序:


前言

CTF做题时偶尔会遇到RSA相关的题,看题的第一眼,一时不知道题目想表达什么意思,总是选择跳过,想想逃避也不是办法,所以拿出时间好好的学习一下,并做如下记录:

RSA的加密和解密过程

M为明文,e为加密密钥,n(=p*q)为两个大素数p和q的乘积,C为密文。

加密过程为:
(Python代码为:C=pow(M,e,n))
解密过程为:
(Python代码为:M=pow(C,d,n))

其中欧拉函数 :,

则有欧拉定理:可以利用其对明文进行解密:

故关键在于求出解密密钥d,从而进行解密的工作:

RSA解密之大素数分解:

先看题目:

from Crypto.Util.number import *
from flag import flag

m = bytes_to_long(flag[len(flag)//2:])
c1 = pow(m, 65537, n1)
print(n1)
print(n2)
print(c1)

# 12247140809348479604921471564180586487768585815975746170325674578797616921111648927242702477878849872543969683338347814412280280399275967477718373503763524190496021552733372883417037599168498325950161981721729170194024953207334645938700509179172701603443701676513036373184117480412000162848957930926901064070342060594727138877649766670745134857766661764036934378476688442276560567422187850356210151257923786787091442756100156773140864849609124767854979536563389490085375904027659938964977986897654680889284563129640670232032177056725742821189174971727601008977911455116640309335831115420212521374638571714779847506053
# 18389822985082119646873913587686535874214217599602396974679000398857538596075663540768658488017065196549474272804093118445292224015944596918389865776422060181560031553109483806084574631951190591647750278938010564724055843810793254313504146882222599273288446350501419313914217291247904310021077585634116444021097314062184927716719544311927232109949949458910134433150322055082587361404772349528719519671478486138727923654663563448615598554419892665963321401035629306132188244405787222119955968919006345792782500580161509588811321029347982139894699422553101422836233000469197166308500535772366619674770468010760793069509
# 7452289103798793077695280417169419455166899701788901836734328155284739957725703294559430435103717320729650111554179307802466425440395009249676073483665440706798647037132729666567531235250930696928916715517814635114285584993316017358168840142715891235370969699037025285851393818308877470156970288072245494257783204219286929267254610734755131380439411294744543265526502113623373731011466745762574276043654138385178215058943331773948951832838630012210745419470596111338808224381556830581941343409140019735062104854628895647516786513885853749857584898509027997081419471042234127652413465022131369647282103361292021252058

上来就是一段加密过程 c1=M^65537 mod n1,让求解M。

作为flag的后半段。

【分析】大素数乘积的分解,其实还是相当难的。本题中给出的提示,在于给出了2个大素数乘积n1和n2.考虑n1和n2可能存在非1的公约数p,并将其进行质因数分解。

n1=p*q1;φ(n1)=(p-1)*(q1-1)

n2=p*q2;φ(n2)=(p-1)*(q2-1)

利用分解后的:p、q1、q2、φ(n1)、φ(n2)以及加密密钥 e=65537计算出d1

使的则有:

得到明文M。

代码如下:

from gmpy2 import *
from Crypto.Util.number import *
from gmpy2 import gmpy2
n1 = 12247140809348479604921471564180586487768585815975746170325674578797616921111648927242702477878849872543969683338347814412280280399275967477718373503763524190496021552733372883417037599168498325950161981721729170194024953207334645938700509179172701603443701676513036373184117480412000162848957930926901064070342060594727138877649766670745134857766661764036934378476688442276560567422187850356210151257923786787091442756100156773140864849609124767854979536563389490085375904027659938964977986897654680889284563129640670232032177056725742821189174971727601008977911455116640309335831115420212521374638571714779847506053
n2 = 18389822985082119646873913587686535874214217599602396974679000398857538596075663540768658488017065196549474272804093118445292224015944596918389865776422060181560031553109483806084574631951190591647750278938010564724055843810793254313504146882222599273288446350501419313914217291247904310021077585634116444021097314062184927716719544311927232109949949458910134433150322055082587361404772349528719519671478486138727923654663563448615598554419892665963321401035629306132188244405787222119955968919006345792782500580161509588811321029347982139894699422553101422836233000469197166308500535772366619674770468010760793069509
c1 = 7452289103798793077695280417169419455166899701788901836734328155284739957725703294559430435103717320729650111554179307802466425440395009249676073483665440706798647037132729666567531235250930696928916715517814635114285584993316017358168840142715891235370969699037025285851393818308877470156970288072245494257783204219286929267254610734755131380439411294744543265526502113623373731011466745762574276043654138385178215058943331773948951832838630012210745419470596111338808224381556830581941343409140019735062104854628895647516786513885853749857584898509027997081419471042234127652413465022131369647282103361292021252058
e = 65537
def RSA_Rev(e, c, n1 ,n2):
    e, c, n1 ,n2= int(e), int(c), int(n1) ,int(n2)
    p_gcd=gmpy2.gcd(n1,n2) # 求n1和n2的最大公因数
    q1 = n1 //p_gcd
    q2 = n2 //p_gcd
    phi_n1 = (p_gcd-1)*(q1-1)
    phi_n2 = (p_gcd - 1) * (q2 - 1)
    d1 = inverse(e,phi_n1) # d1*e % phi_n1 =1 m ^(d1*e) % n1 =m % n1
    d2 = inverse(e,phi_n2) # 同上
    m = powmod(c,d1,n1)
    return m
result = RSA_Rev(e, c1, n1 ,n2)
print(long_to_bytes(result))

结果如下:

ctf rsa解密,密码学,密码学#RSA,网络安全,密码学,python

RSA解密之共模攻击:

先看题目:

from Crypto.Util.number import *
from flag import flag
from gmpy2 import *

p = getPrime(1024)
q = next_prime(p)
n = p*q
e1 = 1804229351
e2 = 17249876309
m = bytes_to_long(flag[:len(flag)//2])
c1 = powmod(m, e1, n)
c2 = powmod(m, e2, n)
print(n)
print(c1)
print(c2)

# 14227798861742401852540716332888717235332595511258932399428125495012429818261201186240868671375546180643809315345869312729735352668100158716283088607208451292404162663627276711487019689338710468633410704987197502168728563083176625740126063479495238167172984219407273900290523981389590563738381174675125435910563235888367915191897285579603935365223154045281581682419312751840903594240019982429628783417855528538794749433531158095360003466935959998857033447113462277578120492816081299626797105667620276866227089279904252740529472535147948228322463932897858201223663561471426466212106824114272839095863012820259336144059
# 2748368338696399356059406385595312945664440371827956927334789404676901454102258919606868152316540385208000463440642761405287879849569027874020681549355300369946702438156485982211384887885124482886967526864840331863086331594662631795454303553020872355558178592976537422361579416265570900102758062505943962255117499346913057374083882684989835965522480643110087603318579121205304404525946236083422871576410697046565047678593910601977734714132476221979200843364581376279502810707173477398690996102015964800459309922068049093010978452962359847790672073676418003395400614683686978263829951605421909668803604395510743059852
# 7070101276345592005624370014550240854479574593424211969938240649666938643751466941171043776915676449023981211165935555219820790824597614949347284608975026562914985986222063806111480956426496504946556407374220265497227856480882948301228596856723114892828393147144049633993243598137175008738994501015560080538905886895711926557416875199213888637411899436223058290795415456592713694897141072831473700612930436542512188279951300184002129218824508009944169253380101810937753798244332498115742220765186344500364110972416546143065744238998801429682525071611493344804655212311225682161372326990125019588149565451158694390151

该题中,分别使用了e1、e2两个加密密钥分别对明文m进行了加密, 且共用一个n(=p*q),得到了密文c1和c2。

欧几里得算法:

 

则有ctf rsa解密,密码学,密码学#RSA,网络安全,密码学,python

代码如下:

from Crypto.Util.number import *
from gmpy2 import gmpy2

c1 = 2748368338696399356059406385595312945664440371827956927334789404676901454102258919606868152316540385208000463440642761405287879849569027874020681549355300369946702438156485982211384887885124482886967526864840331863086331594662631795454303553020872355558178592976537422361579416265570900102758062505943962255117499346913057374083882684989835965522480643110087603318579121205304404525946236083422871576410697046565047678593910601977734714132476221979200843364581376279502810707173477398690996102015964800459309922068049093010978452962359847790672073676418003395400614683686978263829951605421909668803604395510743059852
c2 = 7070101276345592005624370014550240854479574593424211969938240649666938643751466941171043776915676449023981211165935555219820790824597614949347284608975026562914985986222063806111480956426496504946556407374220265497227856480882948301228596856723114892828393147144049633993243598137175008738994501015560080538905886895711926557416875199213888637411899436223058290795415456592713694897141072831473700612930436542512188279951300184002129218824508009944169253380101810937753798244332498115742220765186344500364110972416546143065744238998801429682525071611493344804655212311225682161372326990125019588149565451158694390151
e1 = 1804229351
e2 = 17249876309
# e1=4
# e2=8
n = 14227798861742401852540716332888717235332595511258932399428125495012429818261201186240868671375546180643809315345869312729735352668100158716283088607208451292404162663627276711487019689338710468633410704987197502168728563083176625740126063479495238167172984219407273900290523981389590563738381174675125435910563235888367915191897285579603935365223154045281581682419312751840903594240019982429628783417855528538794749433531158095360003466935959998857033447113462277578120492816081299626797105667620276866227089279904252740529472535147948228322463932897858201223663561471426466212106824114272839095863012820259336144059


def RSA_ComModAtk(e1, e2, c1, c2, n):
    e1, e2, c1, c2, n = int(e1), int(e2), int(c1), int(c2), int(n)
    if gmpy2.gcd(e1,e2) ==1:
        s = gmpy2.gcdext(e1, e2)  # 扩展欧几里得算法-辗转相除法使得  x*e1+y*e2=1,求出t和z
        x = s[1]
        y = s[2]
        if x < 0:
            x = - x  # 变指数为正值
            c1 = gmpy2.invert(c1, n)  # 求c1的逆元
        if y < 0:
            y = -y  # 变指数为正值
            c2 = gmpy2.invert(c2, n)  # 求c2的逆元
        m = (pow(c1, x, n) * pow(c2, y, n)) % n  # (c1^x*c2^y)%n=m^e1x*me2y%n=m^(e1x+e2y)%n=m%n=m
        return m
    else :
        return bytes_to_long(b'e1 and e2 are not relatively prime') # e1和e2不互质
result = RSA_ComModAtk(e1, e2, c1, c2, n)
print(long_to_bytes(result))

结果如下:

ctf rsa解密,密码学,密码学#RSA,网络安全,密码学,python

 将2结果合二为一,得到flag。

Python引入Crypto时遇到的问题,及解决方法:

运行程序发现会报错

ctf rsa解密,密码学,密码学#RSA,网络安全,密码学,python

网上找了很多方法,并不是每个方法都奏效:

我成功的方法是这样的:

第一步:安装

pip install pycryptodome

pip install crypto

pip install pycrypto

第二步:到:【Project的名称】\venv\Lib\site-packages的路径下更改文件夹的名称:

将原来小写的crypto更改为Crypto。

ctf rsa解密,密码学,密码学#RSA,网络安全,密码学,python

第三步:重新Run一遍程序:

ctf rsa解密,密码学,密码学#RSA,网络安全,密码学,python文章来源地址https://www.toymoban.com/news/detail-708781.html

到了这里,关于入坑CTF——RSA解密之大素数分解和共模攻击的Python实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • POJ 2429 Miller-rabin素数判定 + pollard-rho质因子分解 + 埃氏筛法

    题目不能说是很难,只是用到了许多数学上的知识(费马小定理,miller-radin,pollard-rho),还有一些算法上的知识DFS,辗转相除。 我也很菜,一个周末的时间都用在这个题目上了,但写了很多很多的注释,花费了大量的篇幅,浅谈了我对这些算法的拙见,希望能够帮助大家!

    2024年02月13日
    浏览(39)
  • 【RSA】RSA加密、解密、签名与验证

    最近要做 iOS SDK 的联网授权,涉及到数据安全验证,因此想到使用 RSA 进行签名和验证。 授权主要流程如下: 1、客户方前往我方开放平台注册授权,得到 AppId 和 AppSecret 。 2、客户方集成 SDK ,调用 Register 接口传入 AppId 和 AppSecret 。 3、 SDK 将 AppId 和客户端平台相关信息提交

    2023年04月08日
    浏览(48)
  • RSA双向加解密(公钥加密-私钥解密;私钥加密-公钥解密)

            非对称加密算法中,提供一个公钥一个私钥。一般情况下,采用公钥加密、私钥解密的方式。         假设有这样一个场景:服务A与服务B需要通信,通信内容为了安全需要进行加密传输,并且服务A与服务B不能互相持有对方的钥匙。         我首先想到的是

    2024年02月11日
    浏览(62)
  • 【华为OD机考 统一考试机试C卷】素数之积/RSA加密算法(C++ Java JavaScript Python C语言)

    目前在考C卷,经过两个月的收集整理, C卷真题已基本整理完毕 抽到原题的概率为2/3到3/3, 也就是最少抽到两道原题。 请注意:大家刷完C卷真题,最好要把B卷的真题刷一下,因为C卷的部分真题来自B卷。 另外订阅专栏还可以联系笔者开通在线OJ进行刷题,提高刷题效率。

    2024年03月21日
    浏览(44)
  • RSA+AES加解密

    需求实现思路 工作中遇到一个需求,需要将接口数据加密发送给后台,项目中采用RSA+AES方式,记录一下思路和实现。 一、加密 1、随机生成AES 32位密钥 2、通过AES对传递数据加密 3、通过RSA的公钥Publickey对AES的密钥进行加密 4、通过RSA的私钥Privatekey对数据进行签名 二、解密

    2024年02月03日
    浏览(35)
  • RSA加密/解密

    1.1、RSA算法介绍 RSA加密算法是一种可逆的非对称加密算法,即RSA加密时候用的密钥(公钥)和RSA解密时用的密钥(私钥)不是同一把。基本原理是将两个很大的质数相乘很容易得到乘积,但是该乘积分解质因数却很困难。RSA算法被广泛的用于加密解密和RSA签名/验证等领域。

    2024年02月06日
    浏览(46)
  • RSA在线加解密

    RSA加密、RSA解密 - devTest.run          RSA算法是目前最经典、最常用的公钥加密算法之一,广泛应用于加密通信、文件加密、数字签名等领域。为了方便用户进行RSA加密操作,现在有一款易于使用的在线RSA加密工具,它就是RSA加密/解密工具。         RSA加密/解密工具非

    2024年02月16日
    浏览(36)
  • Java实现RSA加解密

    2024年02月15日
    浏览(33)
  • Python RSA加密解密

    一、RSA加密算法 RSA加密算法是一种非对称加密算法,加密的秘钥是由公钥和私钥两部分组成秘钥对,公钥用来加密消息,私钥用来解密消息,公钥是公开的,给对方进行加密,私钥则是用户自己保留,用来对加密的数据进行解密。 公钥pem文件格式:以-----BEGIN PUBLIC KEY-----标记

    2024年02月10日
    浏览(45)
  • 若依ruoyi前端vue使用jsencrypt.js加密后端java进行RSA解密(前后端交互RSA加解密)

    目录 1、前后端RSA加解密实现思路 2、前端 3、后端 按照约定来说公钥一般用来加密,大家都可以获取得到,私钥用来解密,当然你也可以混着用,以下示例是前端通过加密,后端解密.  -----BEGIN PUBLIC KEY----- MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ81AMIIBCgKCAQEA1+05vAf7m5NcLNLkRtsm gp+QdzcW6MVdayGTGBJG0v

    2024年02月06日
    浏览(70)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包