用AI模拟CEO的决策过程?简单逻辑驱动复杂系统已走向现实 | AI&Society

这篇具有很好参考价值的文章主要介绍了用AI模拟CEO的决策过程?简单逻辑驱动复杂系统已走向现实 | AI&Society。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

也许在未来5-10年,深度融合神经网络学习能力的基于多主体行为的全息计算,会是一个新的浪潮,能够解决目前人工智能遇到的一些关键瓶颈。

多主体系统

多主体系统是由多个自主运行的agent组成的整体,系统必须找出一种使各个agent协同工作的适当方法。多主体仿真建模,始于美国圣塔菲研究所,他们使用Swarm软件为复杂的个体行为建模, 用于对经济行为进行仿真研究。

而近年,人工智能界似乎被深度学习“抢了风头”。其实除了神经网络以外,还有很多学派,例如多主体仿真就是一种行为学派的人工智能。

学过物理的人都知道,一条规律可以解释很多现象,人类社会、商业组织应该用主体(agent)的方法来还原、模拟。

在2000年前后,圣塔菲研究所的多主体仿真,其研究核心是“涌现”,多主体(multi-agent),是一切技术背后的核心。

现在人类正在迈入一个全新的世界,核心是让一切“可计算”。

模拟仿真计算

模拟仿真计算方向来看,现有可商业化技术已经覆盖了除了人以外的几乎所有自然、物理、工程等领域:太阳黑子爆发模拟、大气运动模拟、城市三维地图……唯独一个领域,在商业实践层面模拟仿真难以覆盖到——就是有“人”的社会性领域。

系统的模拟仿真已经到了一个临界点,即能不能把人“还原”进去。而多主体智能本身就文章来源地址https://www.toymoban.com/news/detail-708888.html

到了这里,关于用AI模拟CEO的决策过程?简单逻辑驱动复杂系统已走向现实 | AI&Society的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 谷歌内部开发AI大语言模型“鹅”;OpenAI CEO 寻求大规模AI芯片全球生产投资

    🦉 AI新闻 🚀 谷歌内部开发AI大语言模型“鹅” 摘要 :谷歌正在积极将AI技术融入其产品中,并为提升员工效率而开发了一个名为“鹅”的AI大语言模型。这一模型仅供公司内部团队使用,旨在辅助新产品的开发。据悉,“鹅”基于Google“25年的工程专业知识”训练而成,能

    2024年02月21日
    浏览(56)
  • 采访 Footprint Analytics CEO Navy:AI 与 Web3 的融合之道

    Web3 正在引领互联网的下一个时代。然而,链上数据碎片化、不标准化的问题依然存在。Footprint Analytics 推出一站式数据解决方案,通过 AI 技术实现区块链数据的自动收集、清洗、关联,构建跨链数据标准,让开发者更便捷地访问和分析数据。 “我们希望成为 Web3 版的‘Goo

    2024年02月09日
    浏览(32)
  • python机器学习(五)逻辑回归、决策边界、代价函数、梯度下降法实现线性和非线性逻辑回归

    线性回归所解决的问题是把数据集的特征传入到模型中,预测一个值使得误差最小,预测值无限接近于真实值。比如把房子的其他特征传入到模型中,预测出房价, 房价是一系列连续的数值,线性回归解决的是有监督的学习。有很多场景预测出来的结果不一定是连续的,我们

    2024年02月15日
    浏览(84)
  • 机器学习算法:线性回归、逻辑回归、决策树和随机森林解析

    引言 机器学习算法是人工智能领域的核心,它们用于解决各种问题,从预测房价到图像分类。本博客将深入探讨四种常见的机器学习算法:线性回归、逻辑回归、决策树和随机森林。 线性回归 什么是线性回归? 线性回归是一种用于建立连续数值输出的机器学习模型的算法。

    2024年02月10日
    浏览(49)
  • 【人工智能】— 逻辑回归分类、对数几率、决策边界、似然估计、梯度下降

    考虑二分类问题,其中每个样本由一个特征向量表示。 直观理解:将特征向量 x text{x} x 映射到一个实数 w T x text{w}^Ttext{x} w T x 一个正的值 w T x text{w}^Ttext{x} w T x 表示 x text{x} x 属于正类的可能性较高。 一个负的值 w T x text{w}^Ttext{x} w T x 表示 x text{x} x 属于负类的可能性

    2024年02月09日
    浏览(46)
  • 钛媒体独家对话小冰CEO李笛:中国 AI 大模型行业是否出现了“劣币驱逐良币”现象?...

    ITValue 在当前环境中,小冰公司团队呈现出一种独特的态度:不迎合,不参与“内卷”,不在算力上竞争,反对大型模型“开源”,也反对“堆积”高昂的算力成本。 作者|林志佳 首发|钛媒体   ITValue “我们反‘内卷’、反‘开源’,盲目开源会把 AI 领域弄得很乱,很容

    2024年01月24日
    浏览(39)
  • Spark MLlib快速入门(1)逻辑回归、Kmeans、决策树、Pipeline、交叉验证

    除了scikit-learn外,在spark中也提供了机器学习库,即Spark MLlib。 在Spark MLlib机器学习库提供两套算法实现的API:基于RDD API和基于 DataFrame API 。今天,主要介绍下 DataFrame API 的使用,不涉及算法的原理。 主要提供的算法如下: 分类 逻辑回归、贝叶斯支持向量机 聚类 K-均值 推荐

    2024年02月16日
    浏览(40)
  • 【强化学习】03 ——马尔可夫决策过程

    在此推荐另一篇文章【自动驾驶决策规划】POMDP之Introduction 提供了一套在结果 部分随机 、 部分在决策者的控制下的决策过程建模 的数学框架。 MDP形式化地描述了一种强化学习的环境 环境完全可观测 当前状态可以完全表征过程(马尔科夫性质) 几乎所有的RL问题都可以转换到

    2024年02月07日
    浏览(45)
  • Python 模型训练:逻辑回归、KNN、朴素贝叶斯、LDA、支持向量机、GBDT、决策树

    常用的分类预测模型:逻辑回归、KNN、朴素贝叶斯、LDA、SVC、GBDT、决策树 如果需要了解相关原理的话,可以另行百度,这里只讲解训练流程,废话不多说,直接开始讲解训练流程 这里用的数据就是一个普通的 DataFrame 数据,样式大概如下 第一列不需要,后面读取数据的时候

    2024年02月05日
    浏览(44)
  • 数据分享|R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病...

    这个数据集( 查看文末了解数据免费获取方式 )可以追溯到1988年,由四个数据库组成。克利夫兰、匈牙利、瑞士和长滩。\\\"目标 \\\"字段是指病人是否有心脏病。它的数值为整数,0=无病,1=有病 ( 点击文末“阅读原文”获取完整 代码数据 ) 。 目标: 主要目的是预测给定的人

    2024年02月16日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包