1. 数据聚合
1.1 聚合介绍
聚合(aggregations)可以实现对文档数据的统计、分析、运算。
聚合常见的有三类:
-
桶(Bucket)聚合:用来对文档做分组
- TermAggregation:按照文档字段值分组
- Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
-
度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等
- Avg:求平均值
- Max:求最大值
- Min:求最小值
- Stats:同时求max、min、avg、sum等
- 管道(pipeline)聚合:其它聚合的结果为基础做聚合
参与聚合的字段为以下字段:
- keyword
- 数值
- 日期
- 布尔
注意,不能是 text 字段
1.2 Bucket 聚合
这里假如我们需要对不同品牌的酒店进行聚合人,那么我们就可以使用桶聚合,桶聚合的例子如下:
GET /hotel/_search
{
"size": 0, // 设置size为0,结果中不包含文档,只包含聚合结果
"aggs": { // 定义聚合
"brandAgg": { //给聚合起个名字
"terms": { // 聚合的类型,按照品牌值聚合,所以选择term
"field": "brand", // 参与聚合的字段
"order": {
"_count": "asc"// 按照聚合数量进行升序排列,默认降序
},
"size": 20 // 希望获取的聚合结果数量
}
}
}
}
聚合结果如下:
如果我们需要在一些查询的条件下进行聚合,比如我们只对200元一下的酒店文档进行聚合,那么聚合条件如下:
GET /hotel/_search
{
"query": {
"range": {
"price": {
"lte": 200 // 只对200元以下的文档聚合
}
}
},
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
}
}
}
}
1.3 Metrics 聚合
如果我们需要按照每个品牌的用户的评分的最大值、最小值、平均值等进行排序,那么这就需要用到 Metrics 聚合了,我们使用 stats
查看所有的聚合属性,该聚合的实现如下:
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
},
"aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算
"scoreAgg": { // 聚合名称
"stats": { // 聚合类型,这里stats可以计算min、max、avg等
"field": "score" // 聚合字段,这里是score
}
}
}
}
}
}
聚合结果如下:
如果我们想要对按照聚合的平均值进行排序,那么DSL语句如下:
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20,
"order": {
"scoreAgg.avg": "asc" //按照平均值进行排序
}
},
"aggs": {
"scoreAgg": {
"stats": {
"field": "score"
}
}
}
}
}
}
1.4 使用 RestClient 进行聚合
我们以各个酒店的品牌聚合为例,其中java语句与DSL语句的一一对应关系如下:
使用RestClient进行聚合的代码如下:
@Test
void testAgg() throws IOException {
//1.准备Request对象
SearchRequest request = new SearchRequest("hotel");
//2.准备size
request.source().size(0);
//3.进行聚合
request.source().aggregation(AggregationBuilders
.terms("brandAgg")
.field("brand")
.size(10));
//4.发送请求
SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);
//解析聚合结果
Aggregations aggregations = response.getAggregations();
//根据名称获取聚合结果
Terms brandterms = aggregations.get("brandAgg");
//获取桶
List<? extends Terms.Bucket> buckets = brandterms.getBuckets();
// 遍历
for (Terms.Bucket bucket: buckets){
// 获取key,也就是品牌信息
String brandName = bucket.getKeyAsString();
System.out.println(brandName);
}
}
结果如下:
2. 自动补全
2.1 安装补全包
自动补全我们需要实现的效果是当我们输入拼音的时候,就有一些产品的提示,这种情况下就需要我们对拼音有一定的处理,所以我们在这里下载一个拼音分词器,下载的方式与上面下载 IK
分词器相差不大,都是首先进入容器内部,然后在容器插件目录下进行安装,
# 进入容器内部
docker exec -it es /bin/bash
# 在线下载并安装
/usr/share/elasticsearch/bin/elasticsearch-plugin install --batch \
https://github.com/medcl/elasticsearch-analysis-pinyin/releases/download/v7.12.1/elasticsearch-analysis-pinyin-7.12.1.zip
#退出
exit
#重启容器
docker restart es
重启后,使用拼音分词器试试效果,如下:
POST /_analyze
{
"text": ["你干嘛哎哟"],
"analyzer": "pinyin"
}
2.2 自定义分词器
从上面的例子我们可以看出,拼音分词器是将一句话的每个字都进行分开,并且首字母的拼音全部都在一起的,这肯定不是我们想要看到的,我们想要的是对句子进行分词后还能根据词语来创建拼音的索引,所以,这就需要我们自定义分词器了。
首先,我们需要了解分词器的工作步骤,elasticsearch中分词器(analyzer)的组成包含三部分:
- character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
- tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart tokenizer
- filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等
自定义分词器的DSL代码如下:
PUT /test //针对的是test索引库
{
"settings": {
"analysis": {
"analyzer": { //自定义分词器
"my_analyzer": { //分词器名称
"tokenizer": "ik_max_word",
"filter": "py" //过滤器名称
}
},
"filter": {
"py": {
"type": "pinyin", //拼音分词器
"keep_full_pinyin": false,
"keep_joined_full_pinyin": true,
"keep_original": true,
"limit_first_letter_length": 16,
"remove_duplicated_term": true,
"none_chinese_pinyin_tokenize": false
}
}
}
},
"mappings": { //创建的索引库的映射
"properties": {
"name": {
"type": "text",
"analyzer": "my_analyzer",//创建索引时的
"search_analyzer": "ik_smart"
}
}
}
}
进行测试如下:
POST /test/_doc/1
{
"id": 1,
"name": "下雪"
}
POST /test/_doc/2
{
"id": 2,
"name": "瞎学"
}
GET /test/_search
{
"query": {
"match": {
"name": "武汉在下雪嘛"
}
}
}
查询结果如下:
2.3 自动补全查询
elasticsearch提供了 Completion Suggester
查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:
- 参与补全查询的字段必须是
completion
类型。 - 字段的内容一般是用来补全的多个词条形成的数组。
首先我们先建立索引库以及索引库约束,
PUT test2
{
"mappings": {
"properties": {
"title":{
"type": "completion"
}
}
}
}
在 test2
索引库中添加数据
// 示例数据
POST test2/_doc
{
"title": ["Sony", "WH-1000XM3"]
}
POST test2/_doc
{
"title": ["SK-II", "PITERA"]
}
POST test2/_doc
{
"title": ["Nintendo", "switch"]
}
进行自动补全查询,我们给出一个关键字 s
,对其进行补全查询如下,
GET /test2/_search
{
"suggest": {
"title_suggest": {
"text": "s", // 关键字
"completion": {
"field": "title", // 补全查询的字段
"skip_duplicates": true, // 跳过重复的
"size": 10 // 获取前10条结果
}
}
}
}
查询结果如下:
2.4 拼音自动补全查询
如果想要使用拼音自动补全进行查询,那么就必须自定义分词器了,自定义分词器如下:
PUT /test3
{
"settings": {
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "ik_max_word",
"filter": "py"
},
"completion_analyzer": {
"tokenizer": "keyword",
"filter": "py"
}
},
"filter": {
"py": {
"type": "pinyin",
"keep_full_pinyin": false,
"keep_joined_full_pinyin": true,
"keep_original": true,
"limit_first_letter_length": 16,
"remove_duplicated_term": true,
"none_chinese_pinyin_tokenize": false
}
}
}
},
"mappings": {
"properties": {
"title": {
"type": "completion",
"analyzer": "completion_analyzer"
}
}
}
}
然后创建一个索引库,并添加一些文档,如下:
PUT /test3
{
"mappings": {
"properties": {
"title":{
"type": "completion"
}
}
}
}
POST test3/_doc
{
"title": ["上子", "熵字", "下雪"]
}
POST test3/_doc
{
"title": ["赏金", "秀色", "猎人"]
}
然后就可以根据首字母缩写或者拼音来进行查询了,DSL代码如下:
GET /test3/_search
{
"suggest": {
"suggestions": {
"text": "xx",
"completion": {
"field": "title",
"skip_duplicates": true,
"size": 10
}
}
}
}
如上,我们输入的是下雪的拼音缩写 xx
,进行查询时,结果如下:
当然,也可以对拼音进行按顺序的补全查询。
2.5 RestClient 实现自动补全
2.5.1 建立索引
要实现对索引库的内容进行自动补全,我们需要重新创建索引库,我们的索引库需要多出一个 completion
字段的类型,所以删除原有的索引库后创建新的索引库如下:
DELETE /hotel
PUT /hotel
{
"settings": {
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "ik_max_word",
"filter": "py"
},
"completion_analyzer": {
"tokenizer": "keyword",
"filter": "py"
}
},
"filter": {
"py": {
"type": "pinyin",
"keep_full_pinyin": false,
"keep_joined_full_pinyin": true,
"keep_original": true,
"limit_first_letter_length": 16,
"remove_duplicated_term": true,
"none_chinese_pinyin_tokenize": false
}
}
}
},
"mappings": {
"properties": {
"id": {
"type": "keyword"
},
"name": {
"type": "text",
"analyzer": "ik_max_word",
"copy_to": "all"
},
"address": {
"type": "keyword",
"index": false
},
"price": {
"type": "integer"
},
"score": {
"type": "integer"
},
"brand": {
"type": "keyword",
"copy_to": "all"
},
"city": {
"type": "keyword"
},
"starName": {
"type": "keyword"
},
"bussiness": {
"type": "keyword",
"copy_to": "all"
},
"location": {
"type": "geo_point"
},
"pic": {
"type": "keyword",
"index": false
},
"all": {
"type": "text",
"analyzer": "ik_max_word"
},
"suggestion": {
"type": "completion",
"analyzer": "completion_analyzer"
}
}
}
}
2.5.2 修改数据定义
除此之外,还需要将 Hotel
的定义进行修改,因为自动补全的字段不止一个字段,所以我们使用列表类型,定义如下:
@Data
@NoArgsConstructor
@ToString
public class HotelDoc {
private Long id;
private String name;
private String address;
private Integer price;
private Integer score;
private String brand;
private String city;
private String starName;
private String business;
private String location;
private String pic;
private List<String> suggestion;
public HotelDoc(Hotel hotel) {
this.id = hotel.getId();
this.name = hotel.getName();
this.address = hotel.getAddress();
this.price = hotel.getPrice();
this.score = hotel.getScore();
this.brand = hotel.getBrand();
this.city = hotel.getCity();
this.starName = hotel.getStarName();
this.business = hotel.getBusiness();
this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
this.pic = hotel.getPic();
this.suggestion = Arrays.asList(this.brand, this.business);
}
}
以上定义就是将 brand
和 business
都进行补全的数据结构定义。
之后再按照之前的批量添加将数据库中的数据进行批量新增即可。
2.5.3 补全查询
以下是RestClient与DSL语句的一一对应关系,
补全查询的语句如下:
@Test
void testSuggest() throws IOException{
//1. 准备Request
SearchRequest request = new SearchRequest("hotel");
//2. 准备DSL
request.source().suggest(new SuggestBuilder().addSuggestion(
"suggestions",
SuggestBuilders.completionSuggestion("suggestion")
.prefix("hu")
.skipDuplicates(true)
.size(10)
));
//3. 发起请求
SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);
//4. 输出结果
System.out.println(response);
}
2.5.4 解析结果
输出的查询结果是一个包含很多形式的信息的Map类型,我们需要对其进行解析,获取其中想要的结果才行,解析的语句与DSL查询的结果对应关系如下:
解析的结果的语句如下:文章来源:https://www.toymoban.com/news/detail-708924.html
@Test
void testSuggest() throws IOException{
//1. 准备Request
SearchRequest request = new SearchRequest("hotel");
//2. 准备DSL
request.source().suggest(new SuggestBuilder().addSuggestion(
"suggestions",
SuggestBuilders.completionSuggestion("suggestion")
.prefix("hu")
.skipDuplicates(true)
.size(10)
));
//3. 发起请求
SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);
//4. 解析结果
Suggest suggest = response.getSuggest();
//4.1 根据补全查询名称,获取补全结果
CompletionSuggestion suggestions = suggest.getSuggestion("suggestions");
//4.2 获取options
List<CompletionSuggestion.Entry.Option> options = suggestions.getOptions();
//4.3 遍历
for (CompletionSuggestion.Entry.Option option : options) {
String text = option.getText().toString();
System.out.println(text);
}
}
处理后的结果输出如下:
文章来源地址https://www.toymoban.com/news/detail-708924.html
到了这里,关于SpringCloud(十)——ElasticSearch简单了解(三)数据聚合和自动补全的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!