吴恩达机器学习week2实验答案Practice Lab Linear Regression【C1_W2_Linear_Regression】

这篇具有很好参考价值的文章主要介绍了吴恩达机器学习week2实验答案Practice Lab Linear Regression【C1_W2_Linear_Regression】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Practice Lab: Linear Regression

Exercise 1

Complete the compute_cost below to:

  • Iterate over the training examples, and for each example, compute:

    • The prediction of the model for that example
      f w b ( x ( i ) ) = w x ( i ) + b f_{wb}(x^{(i)}) = wx^{(i)} + b fwb(x(i))=wx(i)+b

    • The cost for that example c o s t ( i ) = ( f w b − y ( i ) ) 2 cost^{(i)} = (f_{wb} - y^{(i)})^2 cost(i)=(fwby(i))2

  • Return the total cost over all examples
    J ( w , b ) = 1 2 m ∑ i = 0 m − 1 c o s t ( i ) J(\mathbf{w},b) = \frac{1}{2m} \sum\limits_{i = 0}^{m-1} cost^{(i)} J(w,b)=2m1i=0m1cost(i)

    • Here, m m m is the number of training examples and ∑ \sum is the summation operator

If you get stuck, you can check out the hints presented after the cell below to help you with the implementation.文章来源地址https://www.toymoban.com/news/detail-709262.html

# UNQ_C1
# GRADED FUNCTION: compute_cost

def compute_cost(x, y, w, b): 
    # number of training examples
    m = x.shape[0] 
    # You need to return this variable correctly
    total_cost = 0
    
    ### START CODE HERE ###  
    for i in range(m):
        total_cost+=((x[i]*w+b)-y[i])**2
    total_cost=total_cost/(2*m)
    ### END CODE HERE ### 
    
    return total_cost

Exercise 2

Please complete the compute_gradient function to:

  • Iterate over the training examples, and for each example, compute:

    • The prediction of the model for that example
      f w b ( x ( i ) ) = w x ( i ) + b f_{wb}(x^{(i)}) = wx^{(i)} + b fwb(x(i))=wx(i)+b

    • The gradient for the parameters w , b w, b w,b from that example
      ∂ J ( w , b ) ∂ b ( i ) = ( f w , b ( x ( i ) ) − y ( i ) ) \frac{\partial J(w,b)}{\partial b}^{(i)} = (f_{w,b}(x^{(i)}) - y^{(i)}) bJ(w,b)(i)=(fw,b(x(i))y(i))
      ∂ J ( w , b ) ∂ w ( i ) = ( f w , b ( x ( i ) ) − y ( i ) ) x ( i ) \frac{\partial J(w,b)}{\partial w}^{(i)} = (f_{w,b}(x^{(i)}) -y^{(i)})x^{(i)} wJ(w,b)(i)=(fw,b(x(i))y(i))x(i)

  • Return the total gradient update from all the examples
    ∂ J ( w , b ) ∂ b = 1 m ∑ i = 0 m − 1 ∂ J ( w , b ) ∂ b ( i ) \frac{\partial J(w,b)}{\partial b} = \frac{1}{m} \sum\limits_{i = 0}^{m-1} \frac{\partial J(w,b)}{\partial b}^{(i)} bJ(w,b)=m1i=0m1bJ(w,b)(i)

    ∂ J ( w , b ) ∂ w = 1 m ∑ i = 0 m − 1 ∂ J ( w , b ) ∂ w ( i ) \frac{\partial J(w,b)}{\partial w} = \frac{1}{m} \sum\limits_{i = 0}^{m-1} \frac{\partial J(w,b)}{\partial w}^{(i)} wJ(w,b)=m1i=0m1wJ(w,b)(i)

    • Here, m m m is the number of training examples and ∑ \sum is the summation operator

If you get stuck, you can check out the hints presented after the cell below to help you with the implementation.

# UNQ_C2
# GRADED FUNCTION: compute_gradient
def compute_gradient(x, y, w, b):   
    # Number of training examples
    m = x.shape[0]
    # You need to return the following variables correctly
    dj_dw = 0
    dj_db = 0
    
    ### START CODE HERE ### 
    for i in range(m):
        f_wb=w*x[i]+b
        dj_dw_i=(f_wb-y[i])*x[i]
        dj_db_i=f_wb-y[i]
        dj_dw+=dj_dw_i
        dj_db+=dj_db_i
    dj_dw=dj_dw/m
    dj_db=dj_db/m
    ### END CODE HERE ### 
        
    return dj_dw, dj_db

到了这里,关于吴恩达机器学习week2实验答案Practice Lab Linear Regression【C1_W2_Linear_Regression】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习(吴恩达第一课)

    课程链接 从给出“正确答案”的数据集中学习 1、回归(Regression) 2、分类(Classification) 总结 1.术语。 2.单变量线性回归 平方误差代价函数 梯度下降算法选择不同的起点,可能会得到不同的结果,因为它得到的是一个局部最小值。 1、学习率 2、用于线性回归的梯度下降 线性回

    2024年02月09日
    浏览(37)
  • 吴恩达机器学习2022-Jupyter-机器学习实例

    在这个实验室里: 探索特征工程和多项式回归,它可以让你使用线性回归机制来适应非常复杂,甚至非常非线性的函数。 您将利用在以前的实验中开发的函数以及matplotlib和NumPy。 线性回归提供了一种模型方法,公式形式为: 如果您的特性/数据是非线性的或者是特性的组合,该

    2024年02月16日
    浏览(41)
  • 吴恩达《机器学习》1-4:无监督学习

    一、无监督学习 无监督学习就像你拿到一堆未分类的东西,没有标签告诉你它们是什么,然后你的任务是自己找出它们之间的关系或者分成不同的组,而不依赖于任何人给你关于这些东西的指导。 以聚类为例,无监督学习算法可以将数据点分成具有相似特征的群组,而不需

    2024年02月07日
    浏览(44)
  • 吴恩达机器学习2022-Jupyter

    在这个实验室中,您将扩展数据结构和以前开发的例程,以支持多个特性。一些程序被更新使得实验室看起来很长,但是它对以前的程序做了一些小的调整使得它可以很快的回顾。 扩展我们的回归模型例程以支持多个特性 扩展数据结构以支持多个特性 重写预测,成本和梯度

    2024年02月16日
    浏览(40)
  • 吴恩达《机器学习》5-6:向量化

    在深度学习和数值计算中,效率和性能是至关重要的。一个有效的方法是使用向量化技术,它可以显著提高计算速度,减少代码的复杂性。接下来将介绍向量化的概念以及如何在不同编程语言和工具中应用它,包括 Octave、MATLAB、Python、NumPy、C和C++。 一、什么是向量化? 向量

    2024年02月05日
    浏览(40)
  • 【机器学习】吴恩达课程1-Introduction

    计算机程序从经验E中学习,解决某一任务T,进行某一性能P,通过P测定在T上的表现因经验E而提高。 跳棋程序 E:程序自身下的上万盘棋局 T:下跳棋 P:与新对手下跳棋时赢的概率 给算法一个数据集,其中包含了正确答案,算法的目的是给出更多的正确答案。 (1)预测房价

    2024年02月16日
    浏览(38)
  • 吴恩达《机器学习》2-2->2-4:代价函数

    一、代价函数的概念 代价函数是在监督学习中用于评估模型的性能和帮助选择最佳模型参数的重要工具。它表示了模型的预测输出与实际目标值之间的差距,即建模误差。代价函数的目标是找到使建模误差最小化的模型参数。 二、代价函数的理解 训练集数据 :假设我们有一

    2024年02月07日
    浏览(35)
  • 关于吴恩达机器学习中反向传播的理解

    在机器学习视频反向传播章节 [1] 中: 我们用 (delta) 来表示误差,则: (boldsymboldelta^{left(4right)}=boldsymbol a^{left(4right)}−boldsymbol y) 。我们利用这个误差值来计算前一层的误差: (boldsymboldelta^{left(3right)}=left(boldsymbolTheta^{left(3right)}right)^Tboldsymboldelta^{left(4rig

    2024年02月01日
    浏览(46)
  • 吴恩达471机器学习入门课程1第3周——逻辑回归

    实施逻辑回归并将其应用于两个不同的数据集。 在这一部分中,你将建立一个逻辑回归模型来预测学生是否被大学录取。 2.1、问题描述 假设你是一所大学部门的管理员,并且想要根据每个申请人在两次考试中的成绩来确定他们被录取的机会。 你有先前申请者的历史数据,可

    2024年02月09日
    浏览(39)
  • 吴恩达《机器学习》6-1->6-3:分类问题、假设陈述、决策界限

    一、什么是分类问题? 在分类问题中,我们试图预测的变量𝑦是离散的值,通常表示某种类别或标签。这些类别可以是二元的,也可以是多元的。分类问题的示例包括: 判断一封电子邮件是否是垃圾邮件(二元分类) 判断一次金融交易是否涉及欺诈(二元分类) 区分肿瘤

    2024年02月05日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包