第一章 神经网络是如何实现的
这些年人工智能蓬勃发展,在语音识别、图像识别、自然语言处理等多个领域得到了很好的应用。推动这波人工智能浪潮的无疑是深度学习。所谓的深度学习实际上就是多层神经网络,至少到目前为止,深度学习基本上是用神经网络实现的。神经网络并不是什么新的概念,早在上个世纪40年代就开展了以感知机为代表的神经网络的研究,只是限于当时的客观条件,提出的模型比较简单,只有输入、输出两层,功能有限,连最简单的异或问题(XOR问题)都不能求解,神经网络的研究走向低潮。
到了80年代中期,随着BP算法的提出,神经网络再次引起研究热潮。当时被广泛使用的神经网络,在输入层和输出层之间引入了隐含层,不但能轻松求解异或问题,还被证明可以逼近任意连续函数。但限于计算能力和数据资源的不足,神经网络的研究再次陷入低潮。
一直对神经网络情有独钟的多伦多大学的辛顿教授,于2006年在《科学》上发表了一篇论文,提出了深度学习的概念,至此神经网络以深度学习的面貌再次出现在研究者的面前。但是深度学习并不是简单地重复以往的神经网络,而是针对以往神经网络研究中存在的问题,提出了一些解决方法,可以实现更深层次的神经网络,这也是深度学习一词的来源。
随着深度学习方法先后被应用到语音识别、图像识别中,并取得了传统方法不可比拟的性能,深度学习引起了人工智能研究的再次高潮。
一、数字识别
1. 引入例子
- 下图是个数字3的图像,其中1代表有笔画的部分,0代表没有笔画的部分。假设想对0到9这十个数字图像进行识别,也就是说,如果任给一个数字图像,我们想让计算机识别出这个图像是数字几,我们应该如何做呢?
2. 模式匹配
- 一种简单的办法就是对每个数字构造一个模式,比如对数字3,我们这样构造模式:有笔画的部分用1表示,而没有笔画的部分,用-1表示,如图所示。当有一个待识别图像时,我们用待识别图像与该模式进行匹配,匹配的方法就是用图像和模式的对应位置数字相乘,然后再对相乘结果进行累加,累加的结果称为匹配值。为了方便表示,我们将模式一行一行展开用
w
i
w_i
wi(
i
i
i = 1, 2, …, n) 表示模式的每一个点。待识别图像也同样处理,用
x
i
x_i
xi(
i
i
i = 1, 2, …, n) 表示。这里假定模式和待识别图像的大小是一样的,由n个点组成。
- 如果模式与待识别图像中的笔画是一样的,就会得到一个比较大的匹配结果,如果有不一致的地方,比如模式中某个位置没有笔画,这部分在模式中为-1,而待识别图像中相应位置有笔画,这部分在待识别图像中为1,这样对应位置相乘就是-1,相当于对结果做了惩罚,会使得匹配结果变小。匹配结果越大说明待识别图像与模式越一致,否则差别就比较大。
- 如图所示是8的图像。这两个数字的区别只是在最左边是否有笔画,当用8与3的模式匹配时,8的左边部分与3的模式的左边部分相乘时,会得到负值,这样匹配结果受到了惩罚,降低了匹配值。相反如果当3与8的模式匹配时,由于3的左边没有笔画值为0,与8的左边对应位置相乘得到的结果是0,也同样受到了惩罚,降低了匹配值。只有当待识别图像与模式笔画一致时,才会得到最大的匹配值。
- 数字3、8分别与3的模式的匹配值各是多少?计算结果,3与3的模式的匹配值是143,而8与3的模式的匹配值是115。可见前者远大于后者。
3. 存在的问题
- 如果想识别一个数字是3还是8,就分别和这两个数字的模式进行匹配,看与哪个模式的匹配值大,就是哪个数字。
- 如果识别0到9这10个数字,只要分别建造这10个数字的模式就可以了。对于一个待识别图像,分别与10个模式匹配,选取匹配值最大的作为识别结果就可以了。但是由于不同数字的笔画有多有少,比如1笔画就少,而8就比较多,所以识别结果的匹配值也会有大有小。
4. 使用 Sigmoid 函数
- 我们可以对匹配值用一个称作sigmoid的函数进行变换,将匹配值变换到0和1之间。sigmoid函数如下式所示,通常用σ表示。
σ
=
1
1
+
e
−
x
\sigma = \frac{1}{1 + e ^ {-x} }
σ=1+e−x1
- 从图中可以看出,当x比较大时,sigmoid输出接近于1,而x比较小时(负数),sigmoid输出接近于0。经过sigmoid函数变换后的结果可以认作是待识别图像属于该数字的概率。
5. 增加偏置项
- 但是像前面的3和8的匹配结果分别为143、115,把两个结果带入到sigmoid函数中,都接近于1了,并没有明显的区分。
- sigmoid函数并不能直接这样用,而是要“平移”一下,加上一个适当的偏置b,使得加上偏置后,两个结果分别在sigmoid函数中心线的两边,来解决这个问题:
- 比如这里我们让b=-129,这样处理后的sigmoid值分别是:
- sigmoid(143-129)=0.999999
- sigmoid(115-129)=0.000001
- 这样区分的就非常清楚了,接近1的就是识别结果,而接近0的就不是。不同的数字模式具有不同的b值,这样才能解决前面提到的不同数字之间笔画有多有少的问题。
- 这是一种简单的数字识别基本原理。这与神经网络有什么关系呢?
6. 神经网络
- 上面介绍的,其实就是一个简单的神经网络。这是一个可以识别3和8的神经网络,和前面介绍的一样,
x
1
x_1
x1 …
x
n
x_n
xn 表示待识别图像,
w
3.1
w_{3.1}
w3.1 …
w
3.
n
w_{3.n}
w3.n和
w
8.1
w_{8.1}
w8.1 …
w
8.
n
w_{8.n}
w8.n 分别表示3的模式和8的模式,在图中可以看成是每条边的权重。如果用
y
3
y_3
y3 、
y
8
y_8
y8 分别表示识别为3或者8的概率的话,则这个示意图实际表示的和前面介绍的数字识别方法是完全一样的,只不过是换成了用网络的形式表达。
- 图中下边表示输入层,每个圆圈对应输入图像在位置
i
i
i 的值
x
i
x_i
xi ,上边一层表示输出层,每一个圆圈代表了一个神经元,所有的神经元都采取同样的运算:输入的加权和,加上偏置,再经过sigmoid函数得到输出值。这样的一个神经网络,实际表示的是如下计算过程:
7. 数字识别神经网络
- 每个神经元对应的权重都代表了一种模式。比如在这个图中,一个神经元代表的是数字3的模式,另一个神经元代表的是数字8的模式。进一步如果在输出层补足了10个数字,就可以实现数字识别了。
- 要识别的数字不规整,怎么办?
- 这个网络过于简单了,要想构造复杂一些的网络,可以有两个途径。比如一个数字可以有不同的写法,这样的话,同一个数字就可以构造多个不同的模式,只要匹配上一个模式,就可以认为是这个数字。这是一种横向的扩展。另外一个途径就是构造局部的模式。比如可以将一个数字划分为上下左右4个部分,每个部分是一个模式,多个模式组合在一起合成一个数字。不同的数字,也可以共享相同的局部模式。比如3和8在右上、右下部分模式可以是相同的,而区别在左上和左下的模式上。要实现这样的功能,需要在神经网络的输入层、输出层之间增加一层表示局部模式的神经元,这层神经元由于在神经网络的中间部分,所以被称为隐含层。输入层到隐含层的神经元之间都有带权重的连接,而隐含层到输出层之间也同样具有带权重的连接。隐含层的每个神经元,均表示了某种局部模式。这是一种纵向的扩展。
8. 神经网络的横向扩展 – 增加模式
9. 神经网络的纵向扩展 – 局部模式
文章来源:https://www.toymoban.com/news/detail-709326.html
10. 让神经网络更深 - 模式组合
文章来源地址https://www.toymoban.com/news/detail-709326.html
11. 多层神经网络
- 如果要刻画更细致的局部模式,可以通过增加隐含层的数量来刻画更细致的模式,每增加一层隐含层,模式就被刻画的更详细一些。这样就建立了一个深层的神经网络,越靠近输入层的神经元,刻画的模式越细致,体现的越是细微信息的特征;越是靠近输出层的神经元,刻画的模式越是体现了整体信息的特征。这样通过不同层次的神经元体现的是不同粒度的特征。每一层隐含层也可以横向扩展,在同一层中每增加一个神经元,就增加了一种与同层神经元相同粒度特征的模式。
- 神经网络越深越能刻画不同粒度特征的模式,而横向神经元越多,则越能表示不同的模式。但是当神经网络变得复杂后,所要表达的模式会非常多,如何构造各种不同粒度的模式呢?
- 构造模式是非常难的事情,事实上我们也很难手工构造这些模式。在后面我们可以看到,这些模式,也就是神经网络的权重是可以通过样本训练得到的,也就是根据标注好的样本,神经网络会自动学习这些权值,也就是模式,从而实现数字识别。
12. 如何获得模式?
- 模式通过神经元的连接权重表示
- 通过训练样本,自动学习权重,也就是模式
- 不是人工设计!
- 学习到的模式是一种隐含表达,并不像举例的这样清晰
13. 总结
- 神经元可以表示某种模式,不同层次的神经元可以表示不同粒度的特征,从输入层开始,越往上表示的特征粒度越大,从开始的细粒度特征,到中间层次的中粒度特征,再到最上层的全局特征,利用这些特征就可以实现对数字的识别。如果网络足够复杂,神经网络不仅可以实现数字识别,还可以实现更多的智能系统,比如人脸识别、图像识别、语音识别、机器翻译等。
- 神经元实际上是模式的表达,不同的权重体现了不同的模式。权重与输入的加权和,即权重与对应的输入相乘再求和,实现的是一次输入与模式的匹配。该匹配结果可以通过sigmoid函数转换为匹配上的概率。概率值越大说明匹配度越高。
- 一个神经网络可以由多层神经元构成,每个神经元表达了一种模式,越是靠近输入层的神经元表达的越是细粒度的特征,越是靠近输出层的神经元表达的越是粗粒度特征。同一层神经元越多,说明表达的相同粒度的模式越多,而神经网络层数越多,越能刻画不同粒度的特征。
到了这里,关于人工智能AI 全栈体系(一)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!