概率论与数理统计学习笔记(7)——全概率公式与贝叶斯公式

这篇具有很好参考价值的文章主要介绍了概率论与数理统计学习笔记(7)——全概率公式与贝叶斯公式。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 背景

下图是本文的背景内容,小B休闲时间有80%的概率玩手机游戏,有20%的概率玩电脑游戏。这两个游戏都有抽卡环节,其中手游抽到金卡的概率为5%,端游抽到金卡的概率为15%。已知小B这天抽到了金卡,那么请问他是在手机上抽到的还是在电脑上抽到的?
概率论与数理统计学习笔记(7)——全概率公式与贝叶斯公式,数学,概率论,全概率公式,贝叶斯公式

2. 全概率公式

上述问题中,我们先考虑小B抽到金卡这件事的概率,设玩电脑的概率为 P ( c ) P(c) P(c),玩手机的概率为 P ( p ) P(p) P(p),抽到金卡的概率为 P ( v ) P(v) P(v)

  • 如果小B是在电脑上抽到的金卡,那么其概率为 P ( c ) P ( v ∣ c ) P(c)P(v|c) P(c)P(vc),就是玩电脑的概率乘上在电脑上抽到金卡的概率。
  • 如果小B是在手机上抽到的金卡,那么其概率为 P ( p ) P ( v ∣ p ) P(p)P(v|p) P(p)P(vp),就是玩手机的概率乘上在手机上抽到金卡的概率。

上面两个式子分别计算了在手机上抽到金卡和在电脑上抽到金卡的概率,那么两者加起来就是小B抽到金卡的概率,即: P ( v ) = P ( c ) P ( v ∣ c ) + P ( p ) P ( v ∣ p ) P(v)=P(c)P(v|c)+P(p)P(v|p) P(v)=P(c)P(vc)+P(p)P(vp)。这就是全概率公式,简单来说就是该事件在所有可能的情况下发生的概率。

用一个图来表示更直观,如下图所示,是一个长宽为1的正方形,其面积代表了所有事件发生的可能性。玩电脑占了20%的面积,玩手机占了80%的面积;玩电脑抽到金卡,占了玩电脑这块区域里面的15%;玩手机抽到金卡,占了玩手机这块区域里面的5%。
概率论与数理统计学习笔记(7)——全概率公式与贝叶斯公式,数学,概率论,全概率公式,贝叶斯公式
那么抽到金卡的概率,即:
概率论与数理统计学习笔记(7)——全概率公式与贝叶斯公式,数学,概率论,全概率公式,贝叶斯公式

3. 贝叶斯公式

知道了全概率公式后,就很容易理解贝叶斯公式了。贝叶斯公式是建立在我们已经知道结果的情况下,即我们知道小B已经抽到金卡的情况下,反推小B是玩电脑抽到金卡的概率和玩手机抽到金卡的概率。

那么玩电脑抽到金卡的概率可以用图表达为:
概率论与数理统计学习笔记(7)——全概率公式与贝叶斯公式,数学,概率论,全概率公式,贝叶斯公式
表达为数学公式为:
P ( c ∣ v ) = P ( c ) P ( v ∣ c ) P ( v ) P(c|v)=\frac{P(c)P(v|c)}{P(v)} P(cv)=P(v)P(c)P(vc)

同理,玩手机抽到金卡的概率可以用图表达为:
概率论与数理统计学习笔记(7)——全概率公式与贝叶斯公式,数学,概率论,全概率公式,贝叶斯公式
表达为数学公式为:
P ( p ∣ v ) = P ( p ) P ( v ∣ p ) P ( v ) P(p|v)=\frac{P(p)P(v|p)}{P(v)} P(pv)=P(v)P(p)P(vp)

这里 P ( p ∣ v ) P(p|v) P(pv) P ( c ∣ v ) P(c|v) P(cv) 称之为后验概率(posterior),即我们知道了结果,反推过程发生的概率; P ( c ) P(c) P(c) P ( p ) P(p) P(p) 称之为先验概率(prior),即我们还暂时不知道后面的情况,在知道之前事件发生的可能性; P ( v ∣ c ) P(v|c) P(vc) P ( p ∣ c ) P(p|c) P(pc) 称之为似然(likelihood),即在某个情况下,事件发生的可能性。文章来源地址https://www.toymoban.com/news/detail-709438.html

到了这里,关于概率论与数理统计学习笔记(7)——全概率公式与贝叶斯公式的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 概率论与数理统计_数理统计部分

    目录 相关符号 相关概念与例题 背景 总体与样本 统计量 统计量 常用统计量【重点】 直方图 经验分布函数 正态总体的抽样分布 前言复习 𝝌𝟐分布 𝒕分布 𝑭分布 上侧分位点 抽样分布定理【重点】 点估计 前言 点估计【重点】 矩估计方法【重点】 极大似然估计方法【重

    2024年02月10日
    浏览(41)
  • 【概率论与数理统计】猴博士 笔记 p1-p2 古典概型、几何概型

    视频 常见的古典概型题目分为: 有放回 无放回 有放回 对于 有放回 的题目,一般可以这样做: 举个例子,如题: 则它们的答案是: 1. C 4 4 ∗ ( 2 5 ) 4 C_{4}^{4} *(frac{2}{5})^4 C 4 4 ​ ∗ ( 5 2 ​ ) 4 2. C 4 2 ∗ ( 2 5 ) 2 ∗ C 2 2 ∗ ( 1 5 ) 2 C_{4}^{2} *(frac{2}{5})^2*C_{2}^

    2024年02月09日
    浏览(38)
  • 【概率论与数理统计】猴博士 笔记 p24-25 条件概率密度函数、求两个随机变量形成的函数的分布

    题型如下: 已知概率密度,求条件概率密度 已知x怎么样的情况下y服从的概率(或y怎么样的情况下x服从的概率),求f(x,y) 步骤:对于后两个,是在哪个字母的条件下,哪个字母就在后面。 即,如果是在x=???的条件下,那么就选图中第三条方法。 其中: 1、2条符合条件

    2024年02月03日
    浏览(51)
  • 概率论与数理统计 第一章 概率论的基本概念

    1.1.1 前言 1.研究对象: 确定性现象:必然发生或不发生 随机现象:个别试验结果呈现不确定性,大量试验结果呈现统计规律性 2.概率论与数理统计: ​ 该学科是研究和揭示随机现象统计规律性的学科。 1.1.2 随机试验 1.定义: 可以在相同条件下重复进行; 每次试验的结果可

    2024年03月20日
    浏览(54)
  • 概率论与数理统计期末复习

    泊松分布 连续性随机变量概率密度 概率密度积分求分布函数,概率密度函数积分求概率,分布函数端点值相减为概率 均匀分布 正太分布标准化 例题 离散型随机变量函数的分布 概率密度求概率密度 先积分,再求导 例题 二维离散型随机变量的分布 联合分布律 离散型用枚举

    2024年02月08日
    浏览(69)
  • 【概率论和数理统计-基本概念】

    自然界的 现象 分为两类,一类是 确定现象 ,如正负电荷的吸引;一类是 随机现象 ,如抛硬币出现正负。 研究后发现,随机现象也有 统计规律性 。 随机试验 随机现象(通过随机试验,来研究随机现象。) 样本空间 样本点 随机事件(特定情况下,样本空间的一个子集。

    2024年02月03日
    浏览(52)
  • 概率论与数理统计:第一章:随机事件及其概率

    ①古典概型求概率 ②几何概型求概率 ③七大公式求概率 ④独立性 (1)随机试验、随机事件、样本空间 1. 随机试验 E 2. 随机事件 A、B、C ① 必然事件 Ω : P ( Ω ) = 1 P(Ω)=1 P ( Ω ) = 1 ② 不可能事件 Ø : P ( Ø ) = 0 P(Ø)=0 P ( Ø ) = 0 3.样本空间 ① 样本点 ω = 基本事件 ② 样本空间

    2024年02月14日
    浏览(51)
  • 概率论与数理统计基础知识

    本博客为《概率论与数理统计--茆诗松(第二版)》阅读笔记,记录下来,以便自用。 连乘符号: ;总和符号: ;正比于: ∝ ;“任意”符号:∀;“存在”符号:∃; 随机现象所有基本结果的全体称为这个随机现象的基本空间。常用Ω={w}表示,其中元素w就是基本结果

    2024年02月09日
    浏览(44)
  • 概率论与数理统计常用公式大全

    A − B = A − A B = A B ‾ B = A ‾    ⟺    A B = ∅    且 A ∪ B = Ω ( 1 ) 吸 收 律    若 A ⊂ B , 则 A ∪ B = B , A B = A ( 2 ) 交 换 律    A ∪ B = B ∪ A , A B = B A ( 3 ) 结 合 律    ( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) , ( A B ) C = A ( B C ) ( 4 ) 分 配 律    A ( B ∪ C ) = A B ∪ A C , A ∪ B C = ( A ∪

    2024年02月11日
    浏览(49)
  • 概率论与数理统计思维导图

    2024年02月11日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包