一.论文信息
论文题目: Untargeted Backdoor Attack Against Object Detection(针对目标检测的无目标后门攻击)
发表年份: 2023-ICASSP(CCF-B)
作者信息:
- Chengxiao Luo (清华大学深圳国际研究生院)
- Yiming Li(清华大学深圳国际研究生院)
- Yong Jiang(清华大学深圳国际研究生院,鹏程实验室人工智能研究中心)
- Shu-Tao Xia(清华大学深圳国际研究生院,鹏程实验室人工智能研究中心)
二.论文内容
abstract
Recent studies revealed that deep neural networks (DNNs) are exposed to backdoor threats when training with third-party resources (such as training samples or backbones). The backdoored model has promising performance in predicting benign samples, whereas its predictions can be maliciously manipulated by adversaries based on activating its backdoors with pre-defined trigger patterns. Currently, most of the existing backdoor attacks were conducted on the image classification under the targeted manner. In this paper, we reveal that these threats could also happen in object detection, posing threatening risks to many mission-critical applications (e.g., pedestrian detection and intelligent surveillance systems). Specifically, we design a simple yet effective poisononly backdoor attack in an untargeted manner, based on task characteristics. We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns. We conduct extensive experiments on the benchmark dataset, showing its effectiveness in both digital and physical-world settings and its resistance to potential defenses.
中文摘要
最近的研究表明,深度神经网络(Deep Neural Network,DNNs)在使用第三方资源(如训练样本或主干网络)进行训练时容易受到后门威胁。后门模型在预测良性样本方面具有良好的性能,然而,基于使用预定义的触发模式激活其后门,其预测可能被对手恶意操纵。目前,已有的后门攻击大多以有针对性的方式针对图像分类进行。在本文中,我们揭示了这些威胁也可能发生在目标检测中,对许多关键任务应用(例如行人检测和智能监控系统)构成威胁风险。具体而言,基于任务特征,以无针对性的方式设计了一种简单而有效的后门攻击。一旦后门被攻击嵌入到目标模型中,它就可以欺骗模型,使其对任何带有触发模式的对象失去检测。在基准数据集上进行了广泛的实验,表明了其在数字和物理世界设置中的有效性,以及对潜在防御的抵抗。
1.论文概述
这是一篇发表在2023年ICASSP会议上的关于目标检测后门攻击的论文。与以往工作不同,以往工作主要关注图像分类任务的后门攻击,而本工作则关注目标检测任务的后门攻击(而且不针对特定目标)。文章来源:https://www.toymoban.com/news/detail-709478.html
2.背景介绍
目标检测的目的是对图像中的一组对象进行定位并识别其类别[1]。它已被广泛应用于关键任务应用(例如行人检测[2]和自动驾驶[3])。因此,有必要确保其安全。目前,最先进的目标检测器都是基于深度神经网络(deep neural networks, dnn)设计的[4,5,6],而深度神经网络的训练通常需要大量的资源。为了减轻训练负担,研究人员和开发人员通常会利用第三方资源(如训练样本或骨干网络backbone),甚至直接部署第三方模型。一个重要的问题出现了:训练不透明性是否会给目标检测带来新的威胁?文章来源地址https://www.toymoban.com/news/detail-709478.html
3.作者贡献
- 揭示了目标检测中的后门威胁。据我们所知,这是针对这项关键任务的第一次后门攻击。与现有的方法不同(现有的方法主要是针对分类任务设计的,且是有针对性的攻击,要与特定的目标标签相关联),本文关注目标检测任务的后门攻击,使经过中毒数据训练过的模型,在良性样本上表现出正常行为,但在特定触发模式下会让目标逃脱检测。
- 后门攻击是发生在训练阶段的一种攻击,作者提出了一种简单而有效的攻击方法,即:在添加预定义触发模式后移除一些随机选择对象的边界框。 作者认为攻击是隐形的,可以绕过人工检查,因为当图像包含许多对象时通常会漏标一些边界框。
- 作者在基准数据集上进行了大量实验,验证了我们的攻击的有效性及其对潜在后门防御的抵抗力。
4.重点图表
到了这里,关于【论文阅读】Untargeted Backdoor Attack Against Object Detection(针对目标检测的无目标后门攻击)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!