近日,袋鼠云大数据引擎专家郝卫亮,为大家带来了《袋鼠云在实时数据湖上的探索与实践》主题分享,帮助大家能了解到什么是实时数据湖、如何进行数据湖选型及数据平台建设数据湖的经验。
如今,大规模、高时效、智能化数据处理已是“刚需”,企业需要更强大的数据处理能力,来应对数据查询、数据处理、数据挖掘、数据展示以及多种计算模型并行的挑战。
因此,袋鼠云基于自研的一站式大数据基础软件——数栈提出相应的实时数据湖解决方案,能够兼容Iceberg、Hudi等数据湖平台。实时数据湖提供了多样化的分析能力,而不限于批处理、流处理、交互式查询和机器学习;提供了ACID事物能力,可以更好的保障数据质量;提供了完善的数据管理能力,包括数据格式、数据schema等;此外,实时数据湖还提供了存储介质可扩展的能力,支持HDFS、对象存储等。从而大大节省了数据存储成本、提升了开发效率,能够更快更好地挖掘数据价值。
该方案特点在于CDC数据实时入湖,能够保障技术自主可控、全增量一体化、分钟级时延、链路短、对业务稳定性无影响。
• 实时性高:CDC数据对实时性要求高,数据新鲜度越高,往往业务价值越高
• 历史数据量大:数据库的历史数据规模大
• 强一致性:数据处理必须要保证有序性而且结果需要一致性
• Schema动态演进:数据库对应的Schema会随着业务不断变更
在实时入湖落地过程中,研发团队也遇到了诸如小文件影响读写效率;客户群体使用的Flink版本大多还停留在1.12;因此需Hudi适配Flink1.12;存在多套Hadoop集群的场景下存在跨集群的需求等问题,最终都一一克服,提供了完美的解决方案。
在实时数据湖中包含实时ETL、离线ETL、OLAP三类任务,这三类任务在从ODS层到ADS层加工的过程中,聚合操作越来越多,IO越来越密集,多个任务SQL中具有相同逻辑的SQL片段。为此,技术团队探索出了物化视图的方案,完成平台化数据湖物化视图管理,Spark、Trino、Flink支持基于数据湖表格式管理物化视图。
在实时数据湖中基于数据湖构建的物化视图可实现流、批和OLAP任务之间共享,从而进一步降低实时数据湖中数据在整条链路中的延时,从而节省计算成本。
未来,实时数据湖方案还将持续优化,不断增加平台湖表管理的易用性;引入Paimon,让数栈支持对接Paimon、增加基于Paimon的湖仓一体建设;深入并增强内核,提升入湖的的性能;数据湖提供数据共享、支持多引擎,探索数据湖的安全管理方案。
获取完整PPT:https://www.dtstack.com/resources/1051?src=szsm
想了解更多详情,可点击观看视频讲解:https://www.bilibili.com/video/BV1Yu411w7uc/?spm_id_from=333.999.0.0&vd
《数栈产品白皮书》:https://www.dtstack.com/resources/1004?src=szsm
《数据治理行业实践白皮书》下载地址:https://www.dtstack.com/resources/1001?src=szsm
想了解或咨询更多有关袋鼠云大数据产品、行业解决方案、客户案例的朋友,浏览袋鼠云官网:https://www.dtstack.com/?src=szbky文章来源:https://www.toymoban.com/news/detail-709761.html
同时,欢迎对大数据开源项目有兴趣的同学加入「袋鼠云开源框架钉钉技术qun」,交流最新开源技术信息,qun号码:30537511,项目地址:https://github.com/DTStack文章来源地址https://www.toymoban.com/news/detail-709761.html
到了这里,关于一文了解袋鼠云在实时数据湖上的探索与实践的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!