零拷贝技术:减少数据复制和上下文切换,提高网络传输效率(下)

这篇具有很好参考价值的文章主要介绍了零拷贝技术:减少数据复制和上下文切换,提高网络传输效率(下)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前章回顾

在前一章节中,我们了解了DMA技术在文件传输中的重要性,并简要介绍了零拷贝技术。为了提高文件传输的性能,我们需要减少用户态与内核态之间的上下文切换次数以及内存拷贝次数。本章将深入探讨零拷贝技术的优化方法,让我们一起走进零拷贝的优化之路!

如何优化文件传输的性能?

当我们意识到有问题需要进行优化时,我们可以逐个解决问题,例如先减少用户态和内核态的上下文切换次数。

我们知道上下文切换是因为用户空间没有权限操作磁盘或网卡,而只能在虚拟空间上进行。相比之下,内核拥有最高权限,因此操作设备的任务都需要操作系统内核完成。为此,我们需要使用操作系统提供的系统调用函数来通过内核完成这些任务。如果对此还不清楚的小伙伴,可以查看之前章节中单独讲解的内容。

一次系统调用必然会发生两次上下文切换:首先从用户态切换到内核态,当内核执行完任务后,再切换回用户态由进程代码继续执行。

因此,要减少上下文切换的次数,就需要减少系统调用的次数。

另外,我们还可以减少数据拷贝的次数。在之前的分析中,我们发现操作会进行四次数据拷贝,包括两次CPU拷贝和两次DMA控制器数据拷贝。然而,在文件传输过程中,我们实际上并没有对文件进行任何操作,只是将磁盘文件传输给网卡。CPU数据拷贝的次数是由于上下文切换导致CPU在用户态和内核态之间来回复制数据,这是没有必要的。此外,用户缓冲区在整个传输过程中也是没有必要存在的。

如何实现零拷贝

零拷贝技术实现的方式通常有 2 种:

  1. mmap + write
  2. sendfile

让我们来探讨一下如何通过两种方式实现零拷贝技术,从而减少上下文切换和数据拷贝的次数。

mmap(共享缓冲区) + write

首先是使用 mmap + write 的方式。在之前的讨论中,我们了解到在使用 read() 系统调用时,会发生将内核缓冲区的数据拷贝到用户缓冲区的过程。为了减少这一步的开销,可以使用 mmap() 替换 read() 系统调用函数。

我们之前在讨论进程间如何通信时,我们有提到过共享缓冲区,即将内核态的一部分内存空间映射到应用程序所使用的虚拟空间上。如图所示:

零拷贝技术:减少数据复制和上下文切换,提高网络传输效率(下)

而我们此时并不需要多个进程通信,如果只需要将物理内存映射给需要文件传输的进程,情况就会变得稍有不同。那么就可以演化成下面的这种方式,如图所示:

零拷贝技术:减少数据复制和上下文切换,提高网络传输效率(下)

具体过程如下:

  1. 应用程序调用 mmap() 函数后,DMA会将磁盘数据拷贝到内核态的缓存区上,然后应用程序与操作系统共享这个缓冲区。
  2. 应用程序调用 write(),操作系统直接将内核态中的缓冲区数据拷贝到 socket 缓冲区,此时只在内核态进行操作,不会产生用户态和内核态切换,数据搬运过程由CPU完成。
  3. 最后,将内核的 socket 缓冲区数据拷贝到网卡中的数据缓冲区,这一步由DMA控制器操作。

我们可以得知,通过使用 mmap() 替代 read(),可以减少一次数据拷贝的过程。然而,这仍然不是最理想的零拷贝方式,因为仍然需要通过 CPU 将内核缓冲区的数据拷贝到 socket 缓冲区,且仍然需要进行 4 次上下文切换,因为系统调用仍然发生了两次。

接下来,我们来看第二种实现零拷贝的方式 - sendfile。

sendfile

在 Linux 内核版本 2.1 中,引入了一个名为sendfile()的系统调用函数,它提供了一种更高效的文件发送方法。sendfile()函数的使用方式如下:

#include <sys/socket.h>
ssize_t sendfile(int out_fd, int in_fd, off_t *offset, size_t count);	

该函数的前两个参数是目标端和源端的文件描述符,后面两个参数分别表示源端的偏移量和要复制的数据长度。函数的返回值是实际复制数据的长度。

sendfile()函数具有以下优点:

首先,它可以代替之前需要使用read()和write()两个系统调用的操作,从而减少了一次系统调用的开销。尽管sendfile()函数本身仍然需要进行系统调用,但仍然能够减少了2次上下文切换的开销。

其次,该系统调用可以直接将内核缓冲区中的数据复制到套接字缓冲区中,而无需再复制到用户态。这样一来,只需要进行2次上下文切换和3次数据拷贝。下图展示了这一过程的流程:

零拷贝技术:减少数据复制和上下文切换,提高网络传输效率(下)

然而,这个过程仍然不能被称为真正的零拷贝技术。如果我们的网卡支持SG-DMA(散射-聚集直接内存访问)技术,与普通的DMA有所不同,那么我们可以进一步减少通过CPU将内核缓冲区中的数据拷贝到套接字缓冲区的过程。

你可以在你的Linux系统上使用以下命令来查看网卡是否支持散射-聚集特性::

$ ethtool -k eth0 | grep scatter-gather
scatter-gather: on

因此,从Linux内核2.4版本开始,在网卡支持SG-DMA技术的情况下,sendfile()系统调用的过程发生了一些变化,具体过程如下:

第一步,通过DMA将磁盘上的数据拷贝到内核缓冲区中;

第二步:内核缓冲区只需要将描述符和数据长度发送给套接字缓冲区,然后将直接通过SG-DMA将内核缓冲区中的数据拷贝到网卡的缓冲区中,这个过程不再需要从操作系统的内核缓冲区中拷贝到套接字缓冲区,从而减少了一次数据拷贝的过程。

因此,在这个过程中,只进行了两次数据拷贝,如下图所示:

零拷贝技术:减少数据复制和上下文切换,提高网络传输效率(下)

这就是所谓的零拷贝(Zero-copy)技术,因为我们没有在内存层面进行数据拷贝,也就是说在整个过程中没有使用CPU来传输数据,而是完全依靠DMA来进行数据传输。

相比传统的文件传输方式,零拷贝技术可以减少2次上下文切换和数据拷贝的次数,只需要进行2次上下文切换和数据拷贝,就能完成文件的传输。而且这2次数据拷贝过程都不需要通过CPU,而是由DMA来进行数据传输。

因此,总体来看,零拷贝技术可以将文件传输的性能提升至少一倍以上。值得一提的是,在讲解零拷贝技术时,并没有提到网络协议是在哪个步骤中封装的。大家也应该知道,在内核中完成了网络协议的封装,而不是直接从缓冲区中取出数据并发送给网卡就结束了。

总结

本章主要介绍了零拷贝技术在文件传输中的优化方法。首先,通过减少用户态和内核态之间的上下文切换次数和数据拷贝次数来优化文件传输的性能。其次,介绍了两种实现零拷贝的方式:mmap + write和sendfile。通过使用mmap + write,可以将内核缓冲区的数据直接拷贝到socket缓冲区,减少一次数据拷贝过程。而使用sendfile系统调用,则可以进一步减少系统调用和数据拷贝次数。若网卡支持SG-DMA技术,还可以通过DMA将内核缓冲区的数据直接拷贝到网卡缓冲区,实现真正的零拷贝。文章来源地址https://www.toymoban.com/news/detail-709791.html

到了这里,关于零拷贝技术:减少数据复制和上下文切换,提高网络传输效率(下)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ⛳ 多线程面试-什么是多线程上下文切换?

    多线程会共同使用一组计算机上的CPU ,而线程数大于给线程分配的 CPU 数量时,为了让各个线程都有执行的机会,就需要轮转使用CPU。 不同的线程切换使用 CPU, 发生的切换数据等, 就是上下文切换 在上下文切换过程中, CPU 会停止处理当前运行的程序, 并保存当前程序运行的具

    2024年02月14日
    浏览(43)
  • 【CSAPP】进程 | 上下文切换 | 用户视角下的并发进程

      💭 写在前面: 本文将学习《深入理解计算机系统》的第六章 - 关于异常控制流和系统级 I/O 的 进程部分。CSAPP 是计算机科学经典教材《Computer Systems: A Programmer\\\'s Perspective》的缩写,该教材由Randal E. Bryant和David R. O\\\'Hallaron 合著。 📜 本章目录: 0x00 进程(Processes) 0x01 假象

    2024年01月16日
    浏览(60)
  • 从零开始理解Linux中断架构(10)---上下文切换长征路

    有了前面章节的一大堆的铺垫,我们现在考虑一个路径比较长的任务切换: 当前 用户态进程 10#,在中断发生后,被切换到了 用户态进程 15#。        这里将使用异常执行流的概念来解释切换过程。理解了最长的那个切换,其他的任务切换:通过系统调用引起的任务切换,

    2024年02月11日
    浏览(48)
  • Linux_进程的优先级&&环境变量&&上下文切换&&优先级队列

    什么是优先级? 指定一个进程获取某种资源的先后顺序 本质是进程获取cpu资源的优先顺序 为什么要有优先级 进程访问的资源(CPU)是有限的 操作系统关于调度和优先级的原则:分时操作系统,基本的公平,如果进程因为长时间不被调整,就造成了饥饿问题 Linux的优先级特

    2024年04月09日
    浏览(58)
  • vue-element-plus-admin框架的tag上下文切换bug

    首先贴上该框架的链接:https://github.com/kailong321200875/vue-element-plus-admin 在对路由进行部分修改后,网站多次切换tag时,控制台会出现报错: Cannot read properties of undefined (reading \\\'offsetLeft\\\') 。 我在框架的issue中找到了类似问题:打开多个TagsView时会报错,用的 template 分支 对此,作

    2024年02月15日
    浏览(46)
  • Java并发编程挑战与解决方案:上下文切换、死锁、资源限制及底层实现原理

    深入探讨Java并发编程中的挑战,包括上下文切换、死锁、资源限制,并介绍解决方案如减少上下文切换、避免死锁等。了解Java并发机制的底层实现原理和线程间通信方法。

    2024年02月01日
    浏览(45)
  • Arm Cortex R52与TC3xx Aurix上下文切换对比

    目录 1.Arm Cortex R52上下文切换 2.英飞凌TC3xx的CPU上下午切换 2.1 上下文类型 2.2 Task Switching Operation  2.3 Context管理寄存器  2.4 各种事件的上下文切换 2.4.1 中断/Trap的上下文切换 2.4.2 函数调用的上下文切换 2.4.3 FCALL/FRET的上下文切换 2.5 Context Save、Restore操作 2.6 Context 切换性能特性

    2024年02月02日
    浏览(62)
  • 安信可开发环境构建-基于Ai-WB2系列 和 Ai-M61 或 Ai-M62 (环境上下文切换)

    首先,对于Ai-WB2系列环境的构建官方文档已经讲的非常明白了,这里不做阐述 如下链接所示https://blog.csdn.net/Boantong_/article/details/128480919  本人亲自测试可行 ,请严格follow官方的steps。 另外需要注意的是,为了避免错误,尽量不要自己从GIT或者Gitee拉取项目。使用上述链接内,

    2024年02月08日
    浏览(40)
  • 读数据压缩入门笔记06_上下文转换

    3.3.1.1. 如果这两个符号是相同的,那么行程继续 3.3.1.2. 如果不相同,那么当前行程终止 8.6.1.1. 真实数据中普遍存在 9.3.1.1. 事实上符号之间的顺序很重要 9.3.4.1. lexicographical permutation 9.3.4.2. BWT会打乱数据流中符号的顺序,并试图让相同的符号簇彼此靠近 9.3.4.3. 找出原始数

    2024年02月09日
    浏览(51)
  • 中间件中防止数据上下文并发导致异常

    在ASP.NET Core中,如果你想在中间件中只使用一个实例的数据库上下文(DbContext),你需要确保这个上下文在整个请求中是可用的,并且中间件在处理请求时能够访问它。以下是如何做到这一点的步骤: 注册DbContext为Scoped : 在Startup.cs的 ConfigureServices 方法中,你需要将你的D

    2024年01月24日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包