迁移学习:互信息的变分上下界

这篇具有很好参考价值的文章主要介绍了迁移学习:互信息的变分上下界。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 导引

在机器学习,尤其是涉及异构数据的迁移学习/联邦学习中,我们常常会涉及互信息相关的优化项,我研一下期的处女作(发在SDM'24上)也是致力于此(ArXiv论文链接:FedDCSR,GitHub源码链接:FedDCSR)。其思想虽然简单,但其具体的估计与优化手段而言却大有门道,我们今天来好好总结一下,也算是对我研一的一个收尾。

我们知道,随机变量\(X\)\(Y\)的互信息定义为其联合分布(joint)\(p(x, y)\)和其边缘分布(marginal)的乘积\(p(x)p(y)\)之间的KL散度(相对熵)[1]

\[\begin{aligned} I(X ; Y) &= D_{\text{KL}}\left(p(x, y) \parallel p(x)p(y)\right) \\ &=\mathbb{E}_{p(x, y)}\left[\log \frac{p(x, y)}{p(x)p(y)}\right] \end{aligned} \tag{1} \]

直观地理解,互信息表示一个随机变量包含另一个随机变量信息量(即统计依赖性)的度量;同时,互信息也是在给定另一随机变量知识的条件下,原随机变量不确定度的缩减量,即\(I(X; Y) = H(X) - H(X \mid Y) = H(Y) - H(Y\mid X)\)。当\(X\)\(Y\)一一对应时,\(I(X; Y) = H(X) = H(Y)\);当\(X\)\(Y\)相互独立时\(I(X; Y)=0\)

在机器学习的情境下,联合分布\(p(x, y)\)一般是未知的,因此我们需要用贝叶斯公式将其继续转换为如下形式:

\[\begin{aligned} I(X ; Y) &\overset{(1)}{=}\mathbb{E}_{p(x, y)}\left[\log \frac{p(x \mid y)}{p(x)}\right] \overset{(2)}{=}\mathbb{E}_{p(x, y)}\left[\log \frac{p(y \mid x)}{p(y)}\right] \end{aligned} \tag{2} \]

那么转换为这种形式之后,我们是否就可以开始对其进行估计了呢?答案是否定的。我们假设现在是深度表征学习场景,\(X\)是数据,\(Y\)是数据的随机表征,则对于第\((1)\)种形式来说,条件概率分布\(p(x|y)=\frac{p (y|x)p(x)}{\int p(y|x)p(x)dx}\)是难解(intractable)的(由于\(p(x)\)未知);而对于第\((2)\)种形式而言,边缘分布\(p(y)\)也需要通过积分\(p(y)=\int p(y \mid x)p(x)d x\)来进行计算,而这也是难解的(由于\(p(x)\)未知)。为了解决互信息估计的的难解性,我们的方法是不直接对互信息进行估计,而是采用变分近似的手段,来得出互信息的下界/上界做为近似,转而对互信息的下界/上界进行最大化/最小化[2]

2 互信息的变分下界(对应最大化)

我们先来看互信息的变分下界。我们常常通过最大化互信息的下界来近似地对其进行最大化。具体而言,按照是否需要解码器,我们可以将互信息的下界分为两类,分别对应变分信息瓶颈(解码项)[3][4]Deep InfoMax[5][6]这两种方法。

2.1 数据VS表征:变分信息瓶颈(解码项)

对于互信息的第\((1)\)种表示法即\(I(X ; Y){=}\mathbb{E}_{p(x, y)}\left[\log \frac{p(x \mid y)}{p(x)}\right]\),我们已经知道条件分布\(p(x|y)\)是难解的,那么我们就采用变分分布\(q(x|y)\)将其转变为可解(tractable)的优化问题。这样就可以导出互信息的Barber & Agakov下界(由于KL散度的非负性):

\[\begin{aligned} I(X ; Y)= & \mathbb{E}_{p(x, y)}\left[\log \frac{q(x \mid y)}{p(x)}\right]+\mathbb{E}_{p(y)}\left[D_{\text{K L}}(p(x \mid y) \mid q(x \mid y))\right] \\ \geq & \mathbb{E}_{p(x, y)}[\log q(x \mid y)]+H(X) \triangleq I_{\mathrm{BA}}, \end{aligned} \tag{3} \]

这里\(H(X)\)\(X\)的微分熵,BA是论文[7]两位作者名字的缩写。当\(q(x|y)=p(x|y)\)时,该下界是紧的,此时上式的第一项就等于条件熵\(H(X|Y)\)

上式可不可解取决于微分熵\(H(X)\)是否已知。幸运的是,限定在 \(X\)是数据,\(Y\)是表征 的场景下,\(H(X)=\mathbb{E}_{x\sim p(x)} \log p(x)\)仅涉及数据生成过程,和模型无关。这意味着我们只需要最大化\(I_{\text{BA}}\)的第一项,而这可以理解为最小化VAE中的重构误差(失真,distortion)。此时,\(I_{\text{BA}}\)的梯度就与“编码器”\(p(y|x)\)和变分“解码器”\(q(x|y)\)相关,而这是易于计算的。因此,我们就可以使用该目标函数来学习一个最大化\(I(X; Y)\)的编码器\(p(y|x)\),这就是大名鼎鼎的变分信息瓶颈(variational information bottleneck) 的思想(对应其中的解码项部分)。

2.2 表征VS表征:Deep Infomax

我们在 2.1 中介绍的方法虽然简单好用,但是需要构建一个易于计算的解码器\(q(x|y)\),这在\(X\)是数据,\(Y\)是表征的时候非常容易,然而当 \(X\)\(Y\)都是表征 的时候就直接寄了,首先是因为解码器\(q(x|y)\)是难以计算的,其次微分熵\(H(X)\)也是未知的。为了导出不需要解码器的可解下界,我们转向去思考\(q(x|y)\)变分族的的非标准化分布(unnormalized distributions)。

我们选择一个基于能量的变分族,它使用一个判别函数/网络(critic)\(f(x, y): \mathcal{X} \times \mathcal{Y}\rightarrow \mathbb{R}\),并经由数据密度\(p(x)\)缩放:

\[q(x \mid y)=\frac{p(x)}{Z(y)} e^{f(x, y)}, \text { where } Z(y)=\mathbb{E}_{p(x)}\left[e^{f(x, y)}\right]\tag{4} \]

我们将该分布代入公式\((3)\)中的\(I_{\text{BA}}\)中,就导出了另一个互信息的下界,我们将其称为UBA下界(记作\(I_{\text{UBA}}\)),可视为Barber & Agakov下界的非标准化版本(Unnormalized version):

\[\mathbb{E}_{p(x, y)}[f(x, y)]-\mathbb{E}_{p(y)}[\log Z(y)] \triangleq I_{\mathrm{UBA}} \tag{5} \]

\(f(x, y)=\log p(y|x) + c(y)\)时,该上界是紧的,这里\(c(y)\)仅仅是关于\(y\)的函数(而非\(x\))。注意在代入过程中难解的微分熵\(H(X)\)被消掉了,但我们仍然剩下一个难解的\(\log\)配分函数\(\log Z(y)\),它妨碍了我们计算梯度与评估。如果我们对\(\mathbb{E}_{p(y)}[\log Z(y)]\)这个整体应用Jensen不等式(\(\log\)为凹函数),我们能进一步导出式\((5)\)的下界,即大名鼎鼎的Donsker & Varadhan下界[7]

\[I_{\mathrm{UBA}} \geq \mathbb{E}_{p(x, y)}[f(x, y)]-\log \mathbb{E}_{p(y)}[Z(y)] \triangleq I_{\mathrm{DV}} \tag{6} \]

然而,该目标函数仍然是难解的。接下来我们换个角度,我们不对\(\mathbb{E}_{p(y)}[\log Z(y)]\)这个整体应用Jensen不等式,而考虑对里面的\(\log Z(y)\)应用Jensen不等式即\(\log Z(y)=\log \mathbb{E}_{p(x)}\left[e^{f(x, y)}\right]\geq\mathbb{E}_{p(x)}\left[\log e^{f(x, y)}\right]=\mathbb{E}_{p(x)}\left[f(x, y)\right]\),那么我们就可以导出式\((5)\)的上界来对其进行近似:

\[I_{\mathrm{UBA}} \leq \mathbb{E}_{p(x, y)}[f(x, y)]-\mathbb{E}_{p(x)p(y)}\left[f(x, y)\right]\triangleq I_{\mathrm{MINE}} \tag{7} \]

然而式\((5)\)本身做为互信息的下界而存在,因此\(I_{\text{MINE}}\)严格意义上讲既不是互信息的上界也不是互信息的下界。不过这种方法可视为采用期望的蒙特卡洛近似来评估\(I_{\text{DV}}\),也就是作为互信息下界的无偏估计。已经有工作证明了这种嵌套蒙特卡洛估计器的收敛性和渐进一致性,但并没有给出在有限样本下的成立的界[8][9]

\(I_{\text{MINE}}\)思想的基础之上,论文Deep Infomax[6]又向前推进了一步,认为我们无需死抱着信息的KL散度形式不放,可以大胆采用非KL散度的形式。事实上,我们主要感兴趣的是最大化互信息,而不关心它的精确值,于是采用非KL散度形式可以为我们提供有利的trade-off。比如我们就可以基于\(p(x, y)\)\(p(x)p(y)\)Jensen-Shannon散度(JSD),来定义如下的JS互信息估计器:

\[ I_{\text{JSD}} \triangleq \mathbb{E}_{p(x, y)}\left[-\operatorname{sp}\left(-f\left(x, y\right)\right)\right]-\mathbb{E}_{p(x^{\prime})p(y)}\left[\operatorname{sp}\left(f\left(x^{\prime}, y\right)\right)\right], \tag{8} \]

这里\(x\)是输入样本,\(x\prime\)是采自\(p(x^{\prime}) = p(x)\)的负样本,\(\text{sp}(z) = \log (1+e^x)\)\(\text{softplus}\)函数。这里判别网络\(f\)被优化来能够区分来自联合分布的样本对(正样本对)和来自边缘乘积分布的样本对(负样本对)。

此外,噪声对比估计(NCE)[10]做为最先被采用的互信息下界(被称为“InfoNCE”),也可以用于互信息最大化:

\[I(X; Y)\geq \mathbb{E}_{p(x, y)}\left[f\left(x, y\right)-\mathbb{E}_{p(x^{\prime})}\left[\log \sum_{x^{\prime}} e^{f\left(x^{\prime}, y\right)}\right]\right]\triangleq I_{\text{InfoNCE}} \tag{9} \]

对于Deep Infomax而言,\(I_{\text{JSD}}\)\(I_{\text{InfoNCE}}\)形式的之间差别在于负样本分布\(p(x^{\prime})\)的期望是套在正样本分布\(p(x, y)\)期望的里面还是外面,而这个差别就意味着对于\(\text{DV}\)\(\text{JSD}\)而言一个正样本只需要一个负样本,但对于\(\text{InfoNCE}\)而言就是一个正样本就需要\(N\)个负样本(\(N\)为batch size)。此外,也有论文[6]分析证明了\(I_{\text{JSD}}\)对负样本的数量不敏感,而\(I_{\text{InfoNCE}}\)的表现会随着负样本的减少而下降。

3 互信息的变分上界(对应最小化)

我们接下来来看互信息的变分上界。我们常常通过最小化互信息的上界来近似地对互信息进行最小化。具体而言,按照是否需要编码器,我们可以将互信息的下界分为两类,而这两个类别分别就对应了变分信息瓶颈的编码项[4]解耦表征学习[11]

3.1 数据VS表征:变分信息瓶颈(编码项)

对于互信息的第\((2)\)种表示法即\(I(X ; Y){=}\mathbb{E}_{p(x, y)}\left[\log \frac{p(y \mid x)}{p(y)}\right]\),我们已经知道边缘分布\(p(y)=\int p(y \mid x)p(x)d x\)是难解的。但是限定在 \(X\)是数据,\(Y\)是表征 的场景下,我们能够通过引入一个变分近似\(q(y)\)来构建一个可解的变分上界:

\[\begin{aligned} I(X ; Y) & \equiv \mathbb{E}_{p(x, y)}\left[\log \frac{p(y \mid x)}{p(y)}\right] \\ & \overset{(1)}{=}\mathbb{E}_{p(x, y)}\left[\log \frac{p(y \mid x) q(y)}{q(y) p(y)}\right] \\ & \overset{(2)}{=}\mathbb{E}_{p(x, y)}\left[\log \frac{p(y \mid x)}{q(y)}\right]-D_{\text{K L}}(p(y) \| q(y)) \\ & \overset{(3)}{\leq} \mathbb{E}_{p(x)}\left[D_{\text{K L}}(p(y \mid x) \| q(y))\right] \triangleq R, \end{aligned} \tag{10} \]

注意上面的\((1)\)是分子分母同时乘以\(q(y)\)\((2)\)是单独配凑出KL散度;\((3)\)是利用KL散度的非负性(证明变分上下界的常用技巧)。最后得到的这个上界我们在生成模型在常常被称为Rate[12](也就是率失真理论里的那个率),故这里记为\(R\)。当\(q(y)=p(y)\)时该上界是紧的,且该上界要求\(\log q(y)\)是易于计算的。该变分上界经常在深度生成模型(如VAE)[13][14] 被用来限制随机表征的容量。在变分信息瓶颈[4]这篇论文中,该上界被用于防止表征携带更多与输入有关,但却和下游分类任务无关的信息(即对应其中的编码项部分)。

3.2 表征VS表征:解耦表征学习

上面介绍的方法需要构建一个易于计算的编码器\(p(y|x)\),但应用场景也仅限于在\(X\)是数据,\(Y\)是表征的情况下,当 \(X\)\(Y\)都是表征 的时候(即对应解耦表征学习的场景)也会遇到我们在2.2中所面临的问题,从而不能够使用了。那么我们能不能效仿2.2中的做法,对导出的\(I_{\text{JSD}}\)\(I_{\text{InfoNCE}}\)加个负号,从而将互信息最大化转换为互信息最小化呢?当然可以但是效果不会太好。因为对于两个分布而言,拉近它们距离的结果是确定可控的,但直接推远它们距离的结果就是不可控的了——我们无法掌控这两个分布推远之后的具体形态,导致任务的整体表现受到负面影响。那么有没有更好的办法呢?

我们退一步思考:最小化互信息\(I(X; Y)\)的难点在于\(X\)\(Y\)都是随机表征,那么我们可以尝试引入数据随机变量\(D\),使得互信息\(I(X; Y)\)可以进一步拆分为\(D\)\(X\)\(Y\)之间的互信息(如\(I(D; X)\)以及\(I(D; Y)\)。已知三个随机变量的互信息(称之为Interation information[1])的定义如下:

\[\begin{aligned} I(X ; Y ; D)&\overset{(1)}{=}I(X ; Y)-I(X ; Y \mid D)\\ &\overset{(2)}{=}I(X ; D)-I(X ; D \mid Y)\\ &\overset{(3)}{=}I(Y ; D)-I(Y ; D \mid X) \end{aligned} \tag{11} \]

联立上述的等式\((1)\)和等式\((2)\),我们有:

\[ I(X ; Y) = I(X; D) - I (X ; D \mid Y) + I(X; Y \mid D) \tag{12} \]

对解耦表征学习而言,在概率图模型中的结构化假设(V型结构)中\(X\)\(Y\)共同为\(D\)的潜在因子,而\(X\)\(Y\)互不影响(详情可参见论文[11])。\(X\)\(Y\)\(D\)对应的结构化概率关系如下图所示:

迁移学习:互信息的变分上下界

反映在后验概率上即表征后验分布\(q\)满足\(q\left(X \mid D\right)=q\left(X \mid D, Y\right)\),因此上述等式的最后一项就消失了:

\[\begin{aligned} I\left(X ; Y \mid D\right) &= H\left(X \mid D\right)-H\left(X \mid D, Y\right)\\ &=H\left(X \mid D\right)-H\left(X \mid D\right)=0 \end{aligned} \tag{13} \]

这样我们就有:

\[\begin{aligned} I\left(X ; Y\right) &\overset{(1)}{=}I\left(D; X\right)-I\left(D ; X \mid Y\right) \\ & \overset{(2)}{=}I\left(D ; X\right)+I\left(D ; Y\right)-I\left(D ; X, Y\right) \end{aligned} \tag{14} \]

上述的\((1)\)是由于\(I(X; Y \mid D)=0\)\((2)\)是由于互信息的链式法则即\(I(D; X, Y)=I(D; Y) + I(D; X \mid Y)\)

\(I(X; Y)\)等价变换至此,真相已经逐渐浮出水面:我们可以可以通过最小化\(I\left(D ; X\right)\)\(I\left(D ; Y\right)\),最大化\(I\left(D ; X, Y\right)\)来完成对\(I(X; Y)\)的最小化。其直观的物理意义也就是惩罚表征\(X\)\(Y\)中涵盖的总信息,并使得\(X\)\(Y\)共同和数据\(D\)相关联。

基于我们在\(3.1\)\(2.1\)中所推导的\(I(D; X)\)\(I(D; Y)\)的变分上界与\(I(D; X, Y)\)的变分下界,我们就得到了\(I(X; Y)\)的变分上界:

\[\begin{aligned} I\left(X ; Y\right) &\leq \mathbb{E}_{p(D)}\left[D_{\text{K L}}(q(x \mid D) \| p(x)) + D_{\text{K L}}(q(y \mid D) \| p(y))\right] \\ &+ \mathbb{E}_{p(D)}\left[\mathbb{E}_{q(x | D)q(y|D)}[\log p(D \mid x, y)]\right] \end{aligned} \tag{15} \]

直观地看,上式地物理意义为使后验\(q(x\mid D)\)\(q(y\mid D)\)都趋近于各自的先验分布(一般取高斯分布),并减小\(X\)\(Y\)\(D\)的重构误差,直觉上确实符合表征解耦的目标。

4 总结

总结起来,互信息的所有上下界可以表示为下图[2](包括我们前面提到的\(I_{\text{BA}}\)\(I_{\text{UBA}}\)\(I_{\text{DV}}\)\(I_{\text{MINE}}\)\(I_{\text{InfoNCE}}\)等):

迁移学习:互信息的变分上下界

图中节点的代表了它们估计与优化的易处理性:绿色的界表示易估计也易于优化,黄色的界表示易于优化但不易于估计,红色的界表示既不易于优化也不易于估计。孩子节点通过引入新的近似或假设来从父亲节点导出。文章来源地址https://www.toymoban.com/news/detail-710318.html

参考

  • [1] Cover T M. Elements of information theory[M]. John Wiley & Sons, 1999.
  • [2] Poole B, Ozair S, Van Den Oord A, et al. On variational bounds of mutual information[C]//International Conference on Machine Learning. PMLR, 2019: 5171-5180.
  • [3] Tishby N, Pereira F C, Bialek W. The information bottleneck method[J]. arXiv preprint physics/0004057, 2000.
  • [4] Alemi A A, Fischer I, Dillon J V, et al. Deep variational information bottleneck[J]. arXiv preprint arXiv:1612.00410, 2016.
  • [5] Belghazi M I, Baratin A, Rajeshwar S, et al. Mutual information neural estimation[C]//International conference on machine learning. PMLR, 2018: 531-540.
  • [6] Hjelm R D, Fedorov A, Lavoie-Marchildon S, et al. Learning deep representations by mutual information estimation and maximization[J]. arXiv preprint arXiv:1808.06670, 2018.
  • [7] Barber D, Agakov F. The im algorithm: a variational approach to information maximization[J]. Advances in neural information processing systems, 2004, 16(320): 201.
  • [8] Rainforth T, Cornish R, Yang H, et al. On nesting monte carlo estimators[C]//International Conference on Machine Learning. PMLR, 2018: 4267-4276.
  • [9] Mathieu E, Rainforth T, Siddharth N, et al. Disentangling disentanglement in variational autoencoders[C]//International conference on machine learning. PMLR, 2019: 4402-4412.
  • [10] Oord A, Li Y, Vinyals O. Representation learning with contrastive predictive coding[J]. arXiv preprint arXiv:1807.03748, 2018.
  • [11] Hwang H J, Kim G H, Hong S, et al. Variational interaction information maximization for cross-domain disentanglement[J]. Advances in Neural Information Processing Systems, 2020, 33: 22479-22491.
  • [12] Alemi A, Poole B, Fischer I, et al. Fixing a broken ELBO[C]//International conference on machine learning. PMLR, 2018: 159-168.
  • [13] Rezende D J, Mohamed S, Wierstra D. Stochastic backpropagation and approximate inference in deep generative models[C]//International conference on machine learning. PMLR, 2014: 1278-1286.
  • [14] Kingma D P, Welling M. Auto-encoding variational bayes[J]. arXiv preprint arXiv:1312.6114, 2013.

到了这里,关于迁移学习:互信息的变分上下界的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【深度学习】什么是互信息最大化?

      在学习无监督学习时,最常用的loss就是最大化互信息。所以本文对互信息最大化做了一个总结。内容和图片多有参考其他资料,相关的文献一并在参考文献列出。(如果使用对比学习含有温度系数的那个损失函数可能会更简单一点) [1]什么是「互信息」? [2]DIM:通过最

    2024年02月13日
    浏览(39)
  • 深度强化学习的变道策略:Harmonious Lane Changing via Deep Reinforcement Learning

    偏理论,假设情况不易发生 多智能体强化学习的换道策略,不同的智能体在每一轮学习后交换策略,达到零和博弈。 和谐驾驶仅依赖于单个车辆有限的感知结果来平衡整体和个体效率,奖励机制结合个人效率和整体效率的和谐。 自动驾驶不能过分要求速度性能, 考虑单个车

    2024年01月17日
    浏览(33)
  • 【达摩院OpenVI】AIGC技术在图像超分上的创新应用

    团队模型、论文、博文、直播合集,点击此处浏览 近10年来,深度学习技术得到了长足进步,在图像增强领域取得了显著的成果,尤其是以GAN为代表的生成式模型在图像复原、老片修复,图像超分辨率等方面大放异彩。图像超分辨率是视频增强方面,用于提升画质的典型应用

    2024年02月09日
    浏览(58)
  • datagrip 相关数据连接信息无缝迁移

    因为公司换电脑了,接触的项目比较多,不同项目,不同环境的数据库连接有好几十个,如果在新电脑上挨个重新连接一遍劳心劳力,所以想看一下能不能直接将之前保存的连接信息直接迁移到新的电脑上面。 为此,经过多次尝试,验证可行。特此记录一下,方便其他人验证

    2024年02月09日
    浏览(31)
  • 如何备份、还原或迁移 WhatsApp 的信息和资料?

    WhatsApp 会在每天清晨 2 点钟自动创建本地备份文件并将备份文件存储在手机系统设置的文件夹中。 Google 云端硬盘 您可以备份对话记录和媒体到 Google 云端硬盘以便日后更换手机时仍可保留资料。 如要使用 Google 云端硬盘备份,您需要: 1.您的设备必须要与 Google 云端硬盘同步

    2024年02月05日
    浏览(54)
  • C语言的变长数组

    写程序的时候经常要定义这样一个数组,要前面程序运行后才能知道要定义数组的大小。 C99: 1994年,由ANSI/ISO联合委员会开始修订C标准 1999年,1994年对C语言的修订引出了ISO 9899:1999的发表,它通常被称为C99 C11: 2011年,国际标准化组织(ISO)和国际电工委员会(IEC) 旗下的

    2024年02月14日
    浏览(31)
  • 求根号n下界

    目录 求根号n  程序设计 程序分析  系列文章 【问题描述】设计一个计算 的算法,n是任意正整数。 除了赋值和比较运算,该算法只能用到基本的四则运算操作。 【输入形式】输入一个正整数 【输出形式】输出答案

    2023年04月16日
    浏览(21)
  • 跨端开发浪潮中的变与不变

    自 90 年代初开启 PC 时代以来,随着移动网络的快速普及,在 2010 年左右,进入移动时代、IOT 时代,各种移动互联设备不断涌现,除了最常见的 PC、Pad、智能手机外,它还可能是小小的一块智能手表,也可以是一个大屏终端。智能设备层出不穷,填满了人们生活的各个角落,

    2024年01月15日
    浏览(23)
  • 使用X2Keyarch迁移CentOS至浪潮信息KeyarchOS体验

    浪潮信息研发的云峦操作系统KeyarchOS(简称KOS), 是一款面向政企、金融等企业级用户的 Linux 服务器操作系统,其稳定性、安全性、兼容性和性能等核心能力均已得到充分验证。历经近10年自主研发历史,支持x86、ARM、Power主流架构处理器,面向行业提供服务器操作系统解决方案

    2024年02月05日
    浏览(34)
  • 排序算法的时间复杂度存在下界问题

    对于几种常用的排序算法,无论是归并排序、快速排序、以及更加常见的冒泡排序等,这些排序算法的时间复杂度都是大于等于O(n*lg(n))的,而这些排序算法存在一个共同的行为,那就是这些算法在对元素进行排序的时候,都会进行同一个操作,也就是对数组中取出文件,然后

    2024年02月21日
    浏览(31)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包