UMICH CV Image Classification---KNN
在本节课中,首先justin老师为我们介绍了图像分类了基础概念以及其用途,这里就不多涉及了
接着我们思考图像分类问题,如果我们想要直接通过某种算法来实现图像分类,显然是比较棘手的,于是引入了机器学习的思想,即用数据驱动,用数据去训练我们的分类器,再用新的图像来评估我们分类器的性能
然后介绍了几个常见的用于图像分类的数据集,比如说MINIST,CIFAR100,CIFAR10,IMAGENET,Place365等等
接下来介绍了图形分类中一种常用的算法,也是我们作业中要去完成的算法即Nearest Neighbor Classifier以及k-Nearest Neighbor Classifier
总体来说,我们大致需要两步来完成这个算法:
即第一步只是简单的记忆来完成我们的训练过程,第二步选择综合起来离预测图像最近的图像的label,作为我们的预测值
但是我们也可以发现这类方法的致命问题,那就是它的训练时间要比预测时间短,即我们可能很快就可以完成我们模型的训练,但是想要得出我们预测的结果需要很长时间,而这恰好与我们的理念是背道而驰的,我们不在乎要多少时间来训练,而想要尽快的得到预测结果
同时在执行此类算法时,有两个参数很重要,一个是k值的选择,即我们要综合考虑几个周围的邻居的距离来做出判断,一个是我们要选择什么来作为距离的衡量方式
从上面这两张图可以看出k值与距离公式的选择,对于分类尤其是决策边界有着一定程度的影响
因此,如何选择最合适的k值与距离公式,对于knn模型来说,是一个非常重要的问题
用更专业更普适的说法,就是如何去选择我们模型的超参数:
接下来就是讨论如何去设置超参数
首先第一种也是最直接的想法,我们只需要挑选在我们的数据集上表现最好的超参数
这种想法的问题就是会导致模型只在我们训练的数据上表现好,一遇到新的数据表现就不行
第二种就是将数据划分为训练集与测试集,找出在测试集上表现最好的超参数,但是这种想法和第一种也是相同的问题,我们的测试集数据会对模型对超参数的判断产生一定的污染,因而在新的数据上表现也不佳
第三种就是我们划分成train,validation与test三个数据集,用validation找出超参数,在test上测试,而这种的问题在于我们的test只能用一次,就是在找出超参数之后作为新数据测试,而如果我们经过很长的时间研究算法,调整参数最后去测试发现效果不好,一切都前功尽弃了,所以这种方法实用性也不高
最好的方法就是采用交叉验证
把数据集划分成不同的fold,每个fold依次扮演validation或者test或者train的角色
但是缺点也很明显,当数据量增大时,这种花费的时间显然非常久,我们可以将这种方法应用于小数据集
最后对knn算法的用途进行了讨论
除了我们之前提到的,knn算法的预测时间复杂度问题,其简单地使用距离公式来进行分类,有时也会产生错误,比如上面这张图,下方的四个图片的距离值都是一样的,但是显然它们有着巨大的差别
所以直接使用knn算法显然是一个不好的选择,但是我们可以在某些模型的某些步骤去应用knn算法
如上图所示,我们在ConvNet中对不同图片的特征向量使用knn进行分类,早最终的图片分类效果较好
最后放一张总结图:
文章来源:https://www.toymoban.com/news/detail-710456.html
ps:本次A1的作业比较简单,主要引导学生初步学习pytorch,在knn实现中,强调了向量化编程的重要性,减少循环的使用,最后使用交叉验证来寻找k值,这里就不再详细介绍具体实现。文章来源地址https://www.toymoban.com/news/detail-710456.html
到了这里,关于umich cv-1的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!