14.11 Socket 基于时间加密通信

这篇具有很好参考价值的文章主要介绍了14.11 Socket 基于时间加密通信。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在之前的代码中我们并没有对套接字进行加密,在未加密状态下我们所有的通信内容都是明文传输的,这种方式在学习时可以使用但在真正的开发环境中必须要对数据包进行加密,此处笔者将演示一种基于时间的加密方法,该加密方法的优势是数据包每次发送均不一致,但数据包内的内容是一致的,当抓包后会发现每次传输的数据包密文是随机变化的,但内容始终保持一致,也就是说两个拥有相同内容的数据被加密后,数据包密文不同,其主要运用了基于当前时间戳的通信机制。

14.11.1 实现加盐函数

加盐函数此处笔者采用基于时间的加盐方式,取出用户分钟数与秒数并生成随机数作为盐,通过三者的混合计算出一串解密密钥对,此方法的必须保证服务端与客户端时间同步,如果不同步则无法计算出正确的密钥对,解密也就无法继续了。

代码中函数GenRandomString用于实现生成一个随机数,该函数接受一个随机数长度并返回一个字符串。接着GetPasswordSalt_OnSecGetPasswordSalt_OnMin函数分别用于根据当前秒与分钟生成一个随机的盐,函数GetXorKey则用于对特定一段字符串进行异或处理并生成一个Key,函数CRC32则用于对字符串计算得到一个哈希值。

#include <WinSock2.h>
#include <Windows.h>
#include <iostream>
#include <random>
#include <time.h>

#pragma comment(lib,"ws2_32.lib")

using namespace std;

typedef struct
{
  char random[1024];
  char Buffer[4096];
}SocketPackage;

// 产生长度为length的随机字符串
char* GenRandomString(int length)
{
  int flag, i;
  char* string;
  srand((unsigned)time(NULL));
  if ((string = (char*)malloc(length)) == NULL)
  {
    return NULL;
  }

  for (i = 0; i < length - 1; i++)
  {
    flag = rand() % 3;
    switch (flag)
    {
    case 0:
      string[i] = 'A' + rand() % 26;
      break;
    case 1:
      string[i] = 'a' + rand() % 26;
      break;
    case 2:
      string[i] = '0' + rand() % 10;
      break;
    default:
      string[i] = 'x';
      break;
    }
  }
  string[length - 1] = '\0';
  return string;
}

// 通过秒数生成盐
int GetPasswordSalt_OnSec()
{
  time_t nowtime;
  struct tm* p;;
  time(&nowtime);
  p = localtime(&nowtime);
  if (p->tm_sec <= 10)
    return 2;
  else if (p->tm_sec > 10 && p->tm_sec <= 20)
    return 5;
  else if (p->tm_sec > 20 && p->tm_sec <= 30)
    return 8;
  else if (p->tm_sec > 30 && p->tm_sec <= 40)
    return 4;
  else if (p->tm_sec > 40 && p->tm_sec <= 50)
    return 9;
  else
    return 3;
}

// 通过分钟生成盐
int GetPasswordSalt_OnMin()
{
  time_t nowtime;
  struct tm* p;;
  time(&nowtime);
  p = localtime(&nowtime);
  return p->tm_min;
}

// 获取异或整数
long GetXorKey(const char* StrPasswd)
{
  char cCode[32] = { 0 };
  strcpy(cCode, StrPasswd);
  DWORD Xor_Key = 0;
  for (unsigned int x = 0; x < strlen(cCode); x++)
  {
    Xor_Key = Xor_Key + (GetPasswordSalt_OnSec() * GetPasswordSalt_OnMin()) + cCode[x];
  }
  return Xor_Key;
}

// 计算CRC32校验和
DWORD CRC32(char* ptr, DWORD Size)
{
  DWORD crcTable[256], crcTmp1;

  // 动态生成CRC-32表
  for (int i = 0; i < 256; i++)
  {
    crcTmp1 = i;
    for (int j = 8; j > 0; j--)
    {
      if (crcTmp1 & 1) crcTmp1 = (crcTmp1 >> 1) ^ 0xEDB88320L;
      else crcTmp1 >>= 1;
    }
    crcTable[i] = crcTmp1;
  }
  // 计算CRC32值
  DWORD crcTmp2 = 0xFFFFFFFF;
  while (Size--)
  {
    crcTmp2 = ((crcTmp2 >> 8) & 0x00FFFFFF) ^ crcTable[(crcTmp2 ^ (*ptr)) & 0xFF];
    ptr++;
  }
  return (crcTmp2 ^ 0xFFFFFFFF);
}

int main(int argc, char *argv[])
{
  // 生成一个随机数作为盐
  char* uuid = GenRandomString(7);
  std::cout << "随机数: " << uuid << std::endl;

  int sec_key = GetPasswordSalt_OnSec();
  std::cout << "根据秒数生成盐: " << sec_key << std::endl;

  int min_key = GetPasswordSalt_OnMin();
  std::cout << "根据分钟生成盐: " << min_key << std::endl;

  // 传入随机数作为密钥对,生成最终密钥
  long key = GetXorKey(uuid);
  std::cout << "最终密钥: " << key << std::endl;

  int crc32 = CRC32(uuid, 10);
  std::cout << "crc32: " << hex << crc32 << std::endl;

  system("pause");
  return 0;
}

14.11.2 实现加密函数

对于加密函数SendEncryptionPage的实现流程,首先在发送数据包之前调用GenRandomString()生成一个7位的随机数,并将随机数拷贝到pack.random结构内,接着调用异或函数GetXorKey(uuid)生成加密密钥,并依次循环对pack.Buffer中的数据进行逐字节加密。最后将加密数据包发送出去,并接着计算该数据包的CRC32值,并再次通过send()函数将其发送给客户端。

// 加密数据包并发送
bool SendEncryptionPage(SOCKET* ptr, char* send_data)
{
    char buf[8192] = { 0 };
    SocketPackage pack;

    memset(buf, 0, 8192);

    // 生成随机数并拷贝到结构体
    char* uuid = GenRandomString(7);
    strcpy(pack.random, uuid);
    std::cout << "[客户端] 本次随机密钥对: " << uuid << std::endl;

    // 生成并拷贝加密数据
    strcpy(pack.Buffer, send_data);

    int key = GetXorKey(uuid);
    std::cout << " --> 生成随机 key = " << key << std::endl;

    for (int x = 0; x < strlen(pack.Buffer); x++)
    {
        pack.Buffer[x] = pack.Buffer[x] ^ key;
    }

    // 加密数据包并发送
    memcpy(buf, &pack, sizeof(SocketPackage));
    send(*ptr, buf, sizeof(buf), 0);

    // 计算CRC32校验和,并发送给服务端
    DWORD crc32 = CRC32(buf, 100);
    char send_crc32[1024] = { 0 };
    sprintf(send_crc32, "%x", crc32);
    std::cout << " --> 发送CRC32校验和 = " << send_crc32 << std::endl;

    // 发送CRC32计算结果
    send(*ptr, send_crc32, sizeof(send_crc32), 0);
    return true;
}

14.11.3 实现解密函数

解密函数RecvDecryptPage的实现流程与加密函数需要对应,首先当收到加密后的数据包时,该数据包会被存入buf变量内存储,并强制类型转为结构体。接着调用GetXorKey函数生成随机数,该随机数是通过本机时间通过分钟与秒数生成的盐,并与用户密码进行异或得到。通过接收服务器端发过来的CRC32校验码,比对原始数据包有没有被修改过,该校验码是服务端通过数据包生成的,最后客户端计算收到的数据包CRC32是否与服务端一致,一致则继续执行异或循环对数据包进行逐字节解包。

// 接收数据包并解密
char* RecvDecryptPage(SOCKET *ptr)
{
    char buf[8192] = { 0 };

    // 接收加密后的数据包
    memset(buf, 0, sizeof(buf));
    recv(*ptr, buf, sizeof(buf), 0);
    SocketPackage* pack = (SocketPackage*)buf;

    // 接收随机数并获取异或密钥
    int key = GetXorKey(pack->random);
    std::cout << "[服务端] 基于时间计算 key = " << key << std::endl;

    // 服务端验证网络CRC32数据包是否一致
    char recv_crc32[1024] = { 0 };
    recv(*ptr, recv_crc32, sizeof(recv_crc32), 0);
    std::cout << "  --> 收到客户端CRC32校验和 = " << recv_crc32 << std::endl;

    // 计算CRC32是否与发送值一致
    DWORD crc32 = CRC32(buf, 100);
    char this_crc32[1024] = { 0 };
    sprintf(this_crc32, "%x", crc32);
    std::cout << "  --> 计算本地数据包CRC32校验和 = " << this_crc32 << std::endl;

    if (strcmp(recv_crc32, this_crc32) == 0)
    {
        std::cout << "  --> 校验和一致" << std::endl;

        // 开始解密数据包
        for (int x = 0; x < strlen(pack->Buffer); x++)
        {
            pack->Buffer[x] = pack->Buffer[x] ^ key;
        }

        std::cout << "    --> 解密后的数据: " << pack->Buffer << std::endl;
        std::cout << std::endl;
        return pack->Buffer;
    }
}

14.11.4 数据加密收发

当有了上述完整加解密函数的封装之后读者就可以通过使用套接字的方法来实现数据包的通信,当需要接收数据时可以直接调用RecvDecryptPage()函数并传入当前活动套接字,而如果需要发送数据则也只需要调用SendEncryptionPage()函数即可,由于函数已被封装所以在传输数据时与普通套接字函数的使用没有任何区别。

针对服务端的主函数如下所示;

int main(int argc, char* argv[])
{
    WSADATA WSAData;
    SOCKET sock, msgsock;
    struct sockaddr_in ServerAddr;

    if (WSAStartup(MAKEWORD(2, 0), &WSAData) != SOCKET_ERROR)
    {
        ServerAddr.sin_family = AF_INET;
        ServerAddr.sin_port = htons(9999);
        ServerAddr.sin_addr.s_addr = INADDR_ANY;

        sock = socket(AF_INET, SOCK_STREAM, 0);
        bind(sock, (LPSOCKADDR)&ServerAddr, sizeof(ServerAddr));
        listen(sock, 10);
    }

    while (1)
    {
        msgsock = accept(sock, (LPSOCKADDR)0, (int*)0);

        // 接收数据并解密
        char * recv_data = RecvDecryptPage(&msgsock);
        std::cout << "获取包内数据: " << recv_data << std::endl;

        // 发送数据
        SendEncryptionPage(&msgsock, (char*)"ok");
        std::cout << std::endl;

        closesocket(msgsock);
    }
    closesocket(sock);
    WSACleanup();

    return 0;
}

针对客户端的主函数如下所示;

int main(int argc, char* argv[])
{
    while (1)
    {
        WSADATA WSAData;
        SOCKET sock;
        struct sockaddr_in ClientAddr;

        if (WSAStartup(MAKEWORD(2, 0), &WSAData) != SOCKET_ERROR)
        {
            ClientAddr.sin_family = AF_INET;
            ClientAddr.sin_port = htons(9999);
            ClientAddr.sin_addr.s_addr = inet_addr("127.0.0.1");

            sock = socket(AF_INET, SOCK_STREAM, 0);
            int Ret = connect(sock, (LPSOCKADDR)&ClientAddr, sizeof(ClientAddr));
            if (Ret == 0)
            {
                // 发送数据
                char send_message[4096] = "hello lyshark";
                SendEncryptionPage(&sock, send_message);

                // 接收数据
                char* recv_data = RecvDecryptPage(&sock);
                std::cout << "接收数据包: " << recv_data << std::endl;
                std::cout << std::endl;
            }
        }
        closesocket(sock);
        WSACleanup();
        Sleep(5000);
    }
    return 0;
}

读者可自行将上述代码片段组合起来,并分别运行服务端与客户端,当运行后读者可看到如下图所示的输出信息;

14.11 Socket 基于时间加密通信文章来源地址https://www.toymoban.com/news/detail-710847.html

到了这里,关于14.11 Socket 基于时间加密通信的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • tcp/udp socket 网络通信中超时时间的设置

    1.connect函数的超时时间设置只对TCP有效 UDP由于是无连接的connect都会返回success 有两种方法: 第一种方法 默认的socket是阻塞模式 我们只需要设置其为非阻塞模式,然后调用select去查询其状态 代码如下:  第二种是 默认其为阻塞模式  通过setsockopt 函数设置TCP_SYNCNT 值 头文件

    2024年02月15日
    浏览(28)
  • 基于 Socket 接口实现自定义协议通信

    访问【WRITE-BUG数字空间】_[内附完整源码和文档] 根据自定义的协议规范,使用 Socket 编程接口编写基本的网络应用软件。 掌握 C 语言形式的 Socket 编程接口用法,能够正确发送和接收网络数据包 开发一个客户端,实现人机交互界面和与服务器的通信 开发一个服务端,实现并

    2024年02月06日
    浏览(27)
  • 基于python的socket网络通信【1】

    学习了大佬的知识,简单记一些笔记 https://www.jianshu.com/p/066d99da7cbd http://c.biancheng.net/view/2351.html 在计算机通信领域,socket 被翻译为“套接字”,它是计算机之间进行通信的一种约定或一种方式。通过 socket 这种约定,一台计算机可以接收其他计算机的数据,也可以向其他计算

    2024年02月02日
    浏览(30)
  • 基于python socket实现TCP/UDP通信

    两个应用程序如果需要进行通讯最基本的一个前提就是能够唯一的标示一个进程,我们知道IP层的ip地址可以唯一标示主机,而TCP层协议和端口号可以唯一标示主机的一个进程,这样我们可以利用ip地址+协议+端口号唯一标示网络中的一个进程。能够唯一标示网络中的进程后

    2024年02月16日
    浏览(36)
  • 【Go语言】基于Socket编程的P2P通信程序示例

    Go语言的Socket编程实现为开发者提供了一种高效且强大的方式来实现网络通信。通过Go语言的并发模型和内置的网络库,如 net 包,开发者可以轻松地创建基于套接字的通信应用。Go语言的goroutine和channel机制使并发处理变得简单,能够轻松处理多个连接和数据交换。使用Go语言

    2024年02月11日
    浏览(38)
  • C# Socket通信从入门到精通(12)——多个同步UDP客户端C#代码实现

    我们在开发Udp客户端程序的时候,有时候在同一个软件上我们要连接多个服务器,这时候我们开发的一个客户端就不够使用了,这时候就需要我们开发出来的软件要支持连接多个服务器,最好是数量没有限制,这样我们就能应对任意数量的服务器连接,由于我们开发的Udp客户

    2024年02月04日
    浏览(41)
  • 基于QT5.14.2的MQTT通信

    一、概述 这个资料写的很好:MQTT协议,终于有人讲清楚了 参考图: 默认的Qt环境是不能使用MQTT的,但Qt官方提供了基于MQTT的封装,需要通过源码进行编译。 可以在下面的链接中获取到: https://github.com/qt/qtmqtt 在dev分支中可以选择MQTT版本,选择最新的下载到本地。 注意一定

    2024年02月10日
    浏览(31)
  • 【Java网络编程】基于UDP-Socket 实现客户端、服务器通信

    ​ 哈喽,大家好~我是你们的老朋友: 保护小周ღ   本期为大家带来的是网络编程的 UDP Socket 套接字,基于 UDP协议的 Socket 实现客户端服务器通信 ,Socket 套接字可以理解为是,传输层给应用层提供的一组 API,如此程序,确定不来看看嘛~~ 本期收录于博主的专栏 : JavaEE_保

    2024年02月02日
    浏览(46)
  • 基于C++和Qt封装一个简单的socket(TCP/IP)通信UI界面

            最近在学习TCP/IP和socket套接字的有关知识,了解了三次握手四次挥手,TCP协议等等一大堆知识,但纸上得来终觉浅。网络上C++代码实现socket通信的资料很多,方便学习,于是想到自己用Qt实现一个基础的具有网络通信收发功能的服务端UI软件。进入正题:        

    2024年02月08日
    浏览(40)
  • C#上位机基础学习_基于SOCKET实现与PLC服务器的TCP通信(一)

    测试软件: TIA PORTAL V15.1 S7-PLCSIM ADVANCED V3.0 Visual Studio 2019 如下图所示,打开S7-PLCSIM ADVANCED V3.0仿真软件,新键一个实例,设置仿真PLC的IP地址等参数,然后点击Start激活PLC, 如下图所示,激活PLC后,可以看到已经存在一个实例, 如下图所示,打开TIA PORTAL V15.1,新建一个项目,

    2023年04月15日
    浏览(31)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包