16.2 ARP 主机探测技术

这篇具有很好参考价值的文章主要介绍了16.2 ARP 主机探测技术。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

ARP (Address Resolution Protocol,地址解析协议),是一种用于将 IP 地址转换为物理地址(MAC地址)的协议。它在 TCP/IP 协议栈中处于链路层,为了在局域网中能够正确传输数据包而设计,由协议数据单元和对应的操作命令组成。ARP 既可以由操作系统处理,也可以由网卡处理。

该协议的作用是通过一个局域网上的互联网协议(IP)地址来查询对应的物理硬件地址,如数据包发送到路由器时,ARP 协议将使用嵌入在数据包中的目的 IP 地址查找对应的物理地址,路由器根据获取的 MAC 地址转发数据包到下一个网络。

协议工作过程如下:

  • 主机A通过查找其ARP缓存表,比对目标的IP地址是否存在于ARP缓存表中。
  • 如果目标机器的IP地址不存在于本地ARP缓存表中,则主机A需要进行ARP请求过程,它广播一个ARP请求。
  • 当其他主机收到这个请求时,它会比对主机A设置的这个目标IP地址和自己的IP地址是否一致。
  • 如果一致的话,说明被查询的这个IP地址正是自己的IP地址,此时这个主机就会直接向主机A发送ARP响应数据包。
  • 主机A在获得了目标主机的MAC地址信息之后,会把这个MAC地址信息存储到自己的ARP缓存表中,以便以后再次使用。

ARP主机探测原理是通过发送 ARP 查询报文,来获取目标主机的 MAC 地址,进而获取目标主机的 IP 地址。

主机探测的具体实现步骤如下:

  • 构造一个ARP查询报文,报文中的目标IP地址为需要探测的主机IP地址,源IP地址为探测主机的IP地址,源MAC地址为探测主机网卡的MAC地址。
  • 发送ARP查询报文。如果目标主机在线,且相应功能正常,它将返回一个ARP响应报文,其中包含目标主机的MAC地址。
  • 接收到ARP响应报文之后,分析报文,从中提取出目标主机的MAC地址和IP地址等信息。

Windows系统下,我们可以调用SendARP()函数实现ARP探测,该函数用于发送ARP请求到指定的 IP 地址,以获取其 MAC 地址。该函数参数传入目标 IP 地址时能够返回对应 MAC 地址。

SendARP 函数原型如下:

DWORD SendARP(
    IN IPAddr DestIP,             // 目标 IP 地址
    IN IPAddr SrcIP,              // 源 IP 地址(可以为 0)
    OUT PULONG pMacAddr,          // 接收目标 MAC 地址
    IN OUT PULONG PhyAddrLen      // 接收目标 MAC 地址的缓冲区大小,单位为字节
);

该函数的第一个参数为目标IP地址,第二个参数为本地主机IP地址(可以填 0),第三个参数为接收返回的目标 MAC 地址的指针,第四个参数为指向缓冲区大小的指针。

当调用 SendARP() 函数时,如果目标 IP 地址是在同一物理网络中,则返回目标 IP 地址对应的 MAC 地址,并且函数返回值为 NO_ERROR。如果目标 IP 地址无效,或者无法获得对应的 MAC 地址,则函数返回值为错误代码,应该根据错误代码来进行处理。

如下代码实现了扫描局域网中指定ARP主机地址的功能。代码主要使用了SendARP()函数来查询目标主机的MAC地址,并将结果输出。具体实现步骤如下:

#include <stdio.h>
#include <winsock2.h>
#include <IPHlpApi.h>

#pragma comment (lib,"ws2_32.lib")  
#pragma comment (lib,"iphlpapi.lib")

// 扫描局域网中指定ARP主机地址
void ArpScan(char *LocalIP,char *TargetIP)
{
  ULONG localIP = inet_addr(LocalIP);
  ULONG targetIP = inet_addr(TargetIP);

  ULONG macBuf[2] = { 0 };
  ULONG macLen = 6;

  DWORD retValue = SendARP(targetIP, localIP, macBuf, &macLen);

  unsigned char *mac = (unsigned char*)macBuf;
  printf("IP: %-12s --> MAC: ", TargetIP);
  for (int x = 0; x < macLen; x++)
  {
    printf("%.2X", mac[x]);
    if (x != macLen - 1)
      printf("-");
  }
  printf("\n");
}

int main(int argc,char * argv[])
{
  for (int x = 1; x < 100; x++)
  {
    char target[32] = { 0 };
    sprintf(target, "192.168.1.%d", x);
    ArpScan("192.168.1.2", target);
  }
  system("pause");
  return 0;
}

根据端口探测中所使用的方法,实现多线程也很容易,如下代码实现了使用多线程方式扫描局域网内存活的主机。代码中使用 SendARP() 函数来探测目标主机是否存活,并使用多线程方式来加快扫描速度,同时使用临界区来控制多线程条件下的输出效果。

具体实现过程如下:

  • 定义 checkActive() 函数,该函数使用 SendARP() 函数来判断目标主机是否存活。如果目标主机存活,则在屏幕上输出其 IPMAC 地址。

  • 定义 threadProc() 函数来作为多线程的回调函数。该函数接收一台主机的 IP 地址,并调用 checkActive() 函数来探测该主机是否在线。

  • main() 函数中,定义开始和结束的 IP 地址,并使用 for 循环遍历这个 IP 地址段。在循环中,使用 CreateThread() 函数来创建多个线程,每个线程负责探测其中一台主机是否在线。

  • checkActive() 函数中,多线程会涉及到在界面上的输出,为了控制多线程在输出上的次序,使用了 EnterCriticalSection()LeaveCriticalSection() 函数来表示临界区,只有进入临界区的线程能够打印输出,其他线程需要等待进入临界区。

#include <stdio.h>
#include <winsock2.h>
#include <iphlpapi.h>

#pragma comment(lib,"ws2_32.lib")
#pragma comment(lib,"iphlpapi.lib")

// 临界区,控制多线程打印顺序
CRITICAL_SECTION g_critical;

bool checkActive(in_addr ip)
{
  ULONG dstMac[2] = { 0 };
  memset(dstMac, 0xff, sizeof(dstMac));
  ULONG size = 6;
  HRESULT re = SendARP(ip.S_un.S_addr, 0, dstMac, &size);

  if (re == NO_ERROR && size == 6)
  {
    // 线程进入临界区,其他线程不能再进入,控制多线程在界面上的打印顺序
    EnterCriticalSection(&g_critical);

    printf("[+] 发现存活主机: %-15s ---> MAC :", inet_ntoa(ip));
    BYTE *bPhysAddr = (BYTE *)& dstMac;
    for (int i = 0; i < (int)size; i++)
    {
      // 如果是mac地址的最后一段,就输出换行
      if (i == (size - 1))
      {
        printf("%.2X\n", (int)bPhysAddr[i]);
      }
      else
      {
        // 否则没有到最后一段,依旧输出,但不换行
        printf("%.2X-", (int)bPhysAddr[i]);
      }
    }

    // 线程离开临界区,其他线程能够继续进入
    LeaveCriticalSection(&g_critical);
    return true;
  }
  else
  {
    return false;
  }
}

// 启动多线程
DWORD WINAPI threadProc(LPVOID lpThreadParameter)
{
  in_addr ip;
  ip.S_un.S_addr = (ULONG)lpThreadParameter;
  checkActive(ip);
  return 0;
}

int main(int argc, char *argv[])
{
  in_addr ip_start, ip_end;

  // 定义开始IP
  ip_start.S_un.S_addr = inet_addr("192.168.9.1");

  // 定义结束IP
  ip_end.S_un.S_addr = inet_addr("192.168.9.254");

  // 循环探测主机

  //初始临界区
  InitializeCriticalSection(&g_critical);

  for (in_addr ip = ip_start; ip.S_un.S_addr < ip_end.S_un.S_addr; ip.S_un.S_un_b.s_b4++)
  {
    printf("探测: %s \r", inet_ntoa(ip));
    CreateThread(NULL, 0, threadProc, (LPVOID)ip.S_un.S_addr, 0, 0);
  }

  system("pause");
  return 0;
}

编译并运行上述代码片段,则会探测192.168.9.1192.168.9.254网段内存活的主机,并输出该主机的MAC信息,输出效果图如下所示;

16.2 ARP 主机探测技术文章来源地址https://www.toymoban.com/news/detail-710930.html

到了这里,关于16.2 ARP 主机探测技术的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 15.2 主机探测与路由追踪

    Ping 使用 Internet 控制消息协议( ICMP )来测试主机之间的连接。当用户发送一个 ping 请求时,则对应的发送一个 ICMP Echo 请求消息到目标主机,并等待目标主机回复一个 ICMP Echo 回应消息。如果目标主机接收到请求并且网络连接正常,则会返回一个回应消息,表示主机之间的网

    2024年02月08日
    浏览(32)
  • 主机探测与端口扫描-渗透测试模拟环境(2)

    本篇将介绍主机探测与端口扫描渗透模拟环境下整理的各类收集方法、各类工具技术使用的演示,阅读后可用在工作上 。 往期系列文章: 渗透攻防环境搭建与攻防知识体系思维导图 渗透模拟环境配置和工具介绍-渗透测试模拟环境(0)_luozhonghua2000的博客-CSDN博客 外围信息搜集

    2024年02月06日
    浏览(42)
  • Kali使用Netdiscover探测局域网中存活主机

    1、netdiscover介绍 Netdiscover 是一个主动/被动的ARP 侦查工具。使用Netdiscover工具可以在网络上扫描IP地址,检查在线主机或搜索为它们发送的ARP请求。 2、 主动模式:主动模式顾名思义就是主动的探测发现网络内主机,但是这种方式往往会引起网络管理员的注意。 打开Kali终端,使用

    2024年02月02日
    浏览(89)
  • 内网安全-信息收集-内网资源探测-扫描内网存活主机

    简介 基于ICMP发现存活主机 for /L %I in (1,1,254) DO @ping -w 1 -n 1 192.168.199.%I| findstr \\\"TTL=\\\" 或者也可以使用nmap: nmap -sP 192.168.204.1/24 基于NetBlOS(网络基本输入/输出系统)协议发现存活主机 nbtscan-1.0.35.exe 192.168.199.1/24 基于UDP发现存活主机 us -mU 192.168.204.1/24 TCP是有连接的协议,而UDP是

    2024年02月03日
    浏览(49)
  • Ubuntu 18.04 and 16.04 How to change the resolution

    1. open 2. Find 3. Replace the above line by the following line 4. update command 5. restart your system

    2024年01月21日
    浏览(57)
  • 海底光缆位置探测技术的应用概述

         海底光缆运行在地质环境复杂的海洋环境中,地震、海床塌陷、滑坡、洋流变化、海洋生物及船只抛锚都有可能造成光缆断裂、破损,影响光缆的安全运行。海底光缆一旦遭受损坏,其造成的经济损失无法估量。因此在海洋开发工程实施前,需对工程范围内存在光缆位

    2024年02月09日
    浏览(58)
  • 安全事件分析思路及逻辑_当菜省公司安全专业发现一个告警,该告警中显示一台wn主机频繁的通过445端口探测其(1)

    ​ 误报排除方法:如果短时间内扫描大量不存在的web页面(人工达不到的速度,比如上面一分多钟达到208次)那就很有可能是在探 测web目录是否存在一些中间件 ​ 查看扫描的部分路径是否一些常见中间件的url,比如上面一直扫描web是否存在mysql的管理工具,如果扫描到 my

    2024年04月27日
    浏览(39)
  • 2023国赛 B题论文 基于多波束测深技术的海洋探测建模与分析

    因为一些不可抗力,下面仅展示小部分论文,其余看文末 1.1 问题背景 海洋测深是测定水体深度与海底地形的重要任务,有两种主要技术:单波束测深与多波束测深。单波束适用于简单任务,但多波束可提供更精确的地形数据。多波束系统的关键在于覆盖宽度与重叠率的设计

    2024年02月09日
    浏览(37)
  • 负载均衡器 OpenELB ARP 欺骗技术解析

    作者:大飞哥,视源电子运维工程师,KubeSphere 用户委员会广州站站长,KubeSphere Ambassador。 K8S 对集群外暴露服务有三种方式:NodePort,Ingress 和 Loadbalancer。NodePort 用于暴露 TCP 服务(4 层),但限于对集群节点主机端口的占用,不适合大规模使用;Ingress 用于暴露 HTTP 服务(7 层),

    2024年02月01日
    浏览(50)
  • 网络层&&IP协议的基本原理 数据链路层&&ARP协议 域名解析以及一些重要技术

    网络层作用:在复杂的网络环境中确定一个合适的路径。 tcp/ip协议,tcp解决可靠性与效率,ip提供在网络中传输的能力。 传输层决定了单次向下交付数据包的大小。 IP(Internet Protocol)协议是一种网络层协议,用于在互联网上进行数据传输。它定义了数据如何在网络中进行分

    2024年02月15日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包