umich cv-3-1

这篇具有很好参考价值的文章主要介绍了umich cv-3-1。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

UMICH CV Neural Network

对于传统的线性分类器,分类效果并不好,所以这节引入了一个两层的神经网络,来帮助我们进行图像分类
umich cv-3-1
可以看出它的结构十分简单,x作为输入层,经过max(0,W1*x)到达h隐藏层,再经过W2到达s输出层
如果我们对隐藏层的结果进行可视化,我们可以看到如下的图像:
umich cv-3-1
相对于之前线性分类器每类提供的单一的模板,显然神经网络能够为我们提供更多的选择,这也是为什么它能帮助进行分类的一个重要原因
如果我们想要扩展网络层数,也可以这样做:
umich cv-3-1
这样就得到了一个更复杂的神经网络
注意到上述表达式均包含一个max表达式,它的作用是什么?
实际上这个函数通常被称为ReLu函数,作为激活函数,目的就是改变函数的线性结构,常用的其它激活函数如下:
umich cv-3-1
但是它的作用还不止于此
我们知道目前线性分类器最大的缺陷就是,在对分类空间进行划分时,经常不是线性可分的,即使经过矩阵乘法经过空间的变换:
umich cv-3-1
再加入Relu激活函数之后让我们再来看看:
umich cv-3-1
除了第一象限的点,第二象限的点被压缩到了y轴正半轴上,第三象限被压缩到原点,第四象限被压缩到了x轴正半轴上:
umich cv-3-1
这样我们就得到了一个线性可分的空间

上述讨论在我们已经可以看出神经网络的一些优点,其实还有一个重要的优点就是神经网络在某种程度上是universal approximation的
举个例子:
umich cv-3-1
我们可以用隐藏层单元去拟合一个上图所示的这样一个函数,而很多个类似的函数可以去帮助我们拟合任意复杂的函数关系:
umich cv-3-1

神经网络的优点就介绍到这里,下一篇会讲讲具体的运作原理文章来源地址https://www.toymoban.com/news/detail-710984.html

到了这里,关于umich cv-3-1的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • umich cv-6-2 注意力机制

    这节课中介绍了循环神经网络的第二部分,主要引入了注意力机制,介绍了注意力机制的应用以及如何理解,在此基础上建立了注意力层以及transformer架构 注意力机制 注意力机制 应用与理解 注意力层 transformer 上次我们没有提到sequence to sequence的RNN结构: 以文字翻译应用为例

    2024年02月07日
    浏览(31)
  • umich cv-4-2 经典卷积网络架构

    这节课中主要讨论了卷积神经网络的发展历史以及几种经典结构是如何构建的 卷积网络经典结构 AlexNet VGG GoogleNet Residual Network 在2012年的时候,Alexnet神经网络提出,这时网络的架构比如说各个层之间要如何排列组合,使用多少卷积层池化层,每个层又如何设置超参数其实没有

    2024年02月08日
    浏览(37)
  • umich cv-5-2 神经网络训练2

    这节课中介绍了训练神经网络的第二部分,包括学习率曲线,超参数优化,模型集成,迁移学习 训练神经网络2 学习率曲线 超参数优化 模型集成 迁移学习 在训练神经网络时,一个常见的思路就是刚开始迭代的时候学习率较大,然后随着迭代次数的增加,学习率逐渐下降,下

    2024年02月08日
    浏览(34)
  • umich cv-5-1 神经网络训练1

    这节课中介绍了训练神经网络的第一部分,包括激活函数的选择,权重初始化,数据预处理以及正则化方法 训练神经网络1 激活函数 数据预处理 权重初始化 正则化方法 这部分主要讨论我们之前提到的几种激活函数的利弊: 首先我们看sigmoid函数,这种激活函数有着激活函数

    2024年02月08日
    浏览(47)
  • umich cv-6-1 循环神经网络基本知识

    这节课中介绍了循环神经网络的第一部分,主要介绍了循环神经网络的基本概念,vanilla循环网络架构,RNN的一些应用,vanilla架构的问题,更先进的rnn架构比如GRU和LSTM 循环神经网络基本知识 vanilla循环网络架构 应用与理解 vanilla架构的问题 LSTM 在之前的讨论中,我们往往以图

    2024年02月08日
    浏览(40)
  • umich cv-4-1 卷积网络基本组成部分介绍

    这节课中介绍了卷积网络的基本组成部分(全连接层,激活函数,卷积层,池化层,标准化等),下节课讨论了卷积神经网络的发展历史以及几种经典结构是如何构建的 卷积网络组成部分 前言 卷积层 池化层 normalization 在之前提到的全连接神经网络中,我们直接把一个比如说

    2024年02月08日
    浏览(44)
  • Simple Neural Network

    B 站白板推导系列二十三(没有任何数学推导,能够看得很舒服) 李沐-动手学深度学习 相信能看到神经网络的朋友对于机器学习的基础算法已经了解了个大概了,如果你没有听说过感知机算法,那么你可以将它简单理解为你很熟悉的一个算法的弱化版:支持向量机。 感知机

    2024年04月28日
    浏览(30)
  • LSTM Siamese neural network

    本文中的代码在Github仓库或Gitee仓库中可找到。 Hi, 你好。我是茶桁。 大家是否还记得,在「核心基础」课程中,我们讲过CNN以及LSTM。 卷积神经网络(CNN)已经在计算机视觉处理中得到广泛应用,不过,2017年开创性的Transformer神经网络的开创性使其称为一种可行的替代方案,

    2024年02月03日
    浏览(42)
  • RNN:Recurrent Neural Network(上)

    目录 1  为什么提出 RNN 1.1  什么是 Slot Filling 1.2  为什么 FFN 做不好 Slot Filling 1.3  为什么 RNN 能做好 Slot Filling 2  RNN 的整体结构 3  更高级的 RNN 结构 3.1  Deep RNN 3.2  Elman Network Jordan Network 3.3  Bidirectional RNN 原视频: 李宏毅 2020:Recurrent Neural Network (Part I) 李宏毅老师用了一个

    2024年01月19日
    浏览(39)
  • neural network basics2-1

    key words:simple neuron ; multilayer;feedforward;non-linear; (artificial)neural network inspired by the biological neural networls in brains 生物细胞处理信息后,从轴突中输出若干个信号 受神经网络和生物神经元的启发,设计出由计算机能够计算的人工神经元:接受n个数作为输入,然后产生一个数的

    2024年01月20日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包