OpenResty入门之压测篇:压测工具界的 “悍马” wrk

这篇具有很好参考价值的文章主要介绍了OpenResty入门之压测篇:压测工具界的 “悍马” wrk。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在上篇文章 每个后端都应该了解的 OpenResty 入门以及网关安全实战 中,我向大家介绍了 OpenResty 的入门使用是 WAF 防御实战,这篇文章将给大家继续介绍 OpenResty 入门之性能测试 篇。

性能测试是软件开发中不可或缺的一环,它可以帮助我们评估系统的性能、稳定性、可扩展性等指标,为优化和改进提供依据。但是,性能测试也是最容易失准的一种测试,因为它受到很多因素的影响,例如网络环境、服务器配置、压测工具、压测场景等。如果我们选择了不合适的压测工具或者没有设计好压测场景,那么我们得到的结果可能会与实际情况相差甚远,甚至导致错误的判断和决策。

俗话说工欲善其事必先利其器,那么如何选择一款合适的压测工具呢?首先 OpenResty 是 fork 自 Nginx 开发,基于 Nginx 原有的强悍性能(协程 + IO 多路复用 Epoll),其性能就不会差。所以我们需要的是一款自身性能足够强悍,可以最大程度榨干 OpenResty 程序性能、服务端 cpu 资源的压测工具。

这里给大家介绍一款压测工具界的“悍马” —— wrk。wrk 是一款针对 HTTP 协议的基准测试工具,它能够在单机多核 CPU 的条件下,使用系统自带的高性能 I/O 机制,如 epoll,kqueue 等,通过多线程和事件模式,对目标机器产生大量的负载。wrk 支持 Lua 脚本来创建复杂的测试场景(这一点与 OpenResty 支持 Lua 脚本相同),也可以输出详细的响应时间统计信息。wrk 的优点有以下几点:

  • 高性能:wrk 可以利用多核 CPU 的并行计算能力,同时使用多个线程和连接来发送请求,并且使用高效的 I/O 模型来处理响应。这样,wrk 可以在单机上产生高达数十万甚至数百万级别的 QPS(每秒请求数),远超过其他常见的压测工具,如 ab、siege、jmeter 等。
  • 灵活:wrk 支持使用 Lua 脚本来定制压测场景,例如自定义 HTTP 方法、动态生成请求参数、修改请求头等。这样,我们可以模拟各种复杂和真实的用户行为和业务逻辑,使得压测结果更加贴近实际情况。
  • 简洁:wrk 的安装和使用都非常简单,只需要几条命令就可以完成。wrk 的输出也非常清晰和直观,可以显示每个线程和总体的响应时间和每秒请求数,并且可以打印出响应时间的分布情况,方便我们分析系统的性能瓶颈。

wrk 的安装

wrk 只能被安装在类 Unix 系统上,所以我们需要一个 Linux 或者 MacOS 环境。Windows 10 安装需要开启自带的 Ubuntu 子系统。

Linux 安装

对于 Ubuntu/Debian 系统,可以通过以下命令安装 wrk:

sudo apt-get install build-essential libssl-dev git -y
git clone https://github.com/wg/wrk.git wrk
cd wrk
make
# 将可执行文件移动到 /usr/local/bin 位置
sudo cp wrk /usr/local/bin

对于 CentOS / RedHat / Fedora 系统,可以通过以下命令安装 wrk:

sudo yum groupinstall 'Development Tools'
sudo yum install -y openssl-devel git
git clone https://github.com/wg/wrk.git wrk
cd wrk
make
# 将可执行文件移动到 /usr/local/bin 位置
sudo cp wrk /usr/local/bin

MacOS 安装

Mac 系统也可以通过先编译的方式来安装,但是更推荐使用 brew 的方式来安装, 步骤如下:

  • 安装 Homebrew,安装方式参考官网 https://brew.sh (也就一行命令的事);
  • 安装 wrk: brew install wrk;

Windows 10 安装

Windown 10 需要在 Windows 功能 里勾选 适用于 Linux 的 Windows 子系统, 然后通过 bash 命令切换到 Ubuntu 子系统。接下来,参考 Linux 安装 的操作步骤,安装 wrk。

压测前准备

在开始压测前,我们还需要对测试环境进行一番调整,已配合压测工具 wrk 榨干 OpenResty 程序的性能。

单进程最大文件数

Linux 系统默认对每个进程能够打开的文件数有一个限制,通常是 1024 个。这个限制会影响到服务器能够同时处理的连接数,因此需要增加这个限制。增加的方法是修改 /etc/security/limits.conf 文件,添加如下内容:

* soft nofile 65535
* hard nofile 65535

其中 * 号表示修改所有用户的限制,soft 或 hard 指定要修改软限制还是硬限制,65536 则指定了想要修改的新的限制值,即最大打开文件数(请注意软限制值要小于或等于硬限制)。修改完后保存文件。

这样就可以将所有用户的单进程最大打开文件数限制设为 65535 个。如果还不够,可以继续增大这个值,但要注意不要超过系统级的最大打开文件数限制,可以通过 cat /proc/sys/fs/file-max 命令查看这个限制。

最大打开文件数

查看 Linux 系统级的最大打开文件数限制,使用如下命令:

[root@VM-16-5-centos ~]# cat /proc/sys/fs/file-nr
2112	0	369508

这里的最后一个数字,就是最大打开文件数。如果你的机器中这个数字比较小,那就需要修改 /etc/sysctl.conf 文件来增大:

fs.file-max = 1020000
net.ipv4.ip_conntrack_max = 1020000
net.ipv4.netfilter.ip_conntrack_max = 1020000

修改完以后,还需要重启系统服务来生效:

sysctl -p /etc/sysctl.conf

Nginx 工作进程数量以及连接数

最后,我们还需要对 Nginx 的配置文件做一些修改,如下:

# 配置工作进程数量
worker_processes  1;

...

events {
    # 单个工作进程处理连接数量
    worker_connections  1024;
}

默认情况下 Nginx 有 master 和 worker 两种进程,master 进程用于管理 worker 进程,worker 进程用于处理外部请求也就是对外提供服务。

worker_processes 1 的配置说明工作进程数默认为 1。在多核机器上我们可以设置为服务器 CPU 的核数以提升 Nginx 的连接处理数。

worker_connections 1024 的配置说明单个进程能处理的连接数量是 1024,在大压力场景下,我们可以提升这个值,改为 10240。

最后,优化的 Nginx 配置文件如下:

# 根据cpu核数自动设置工作进程数量
worker_processes  auto;

...

events {
    # 单个工作进程处理连接数量
    worker_connections  10240;
}

wrk 的使用

wrk 的基本用法是:

wrk <options> <url>

其中,<options> 是一些可选的参数,用来控制压测的配置,<url> 是要压测的目标网址。

常用参数

wrk 支持以下常用参数:

  • -c, --connections <N>:指定要保持打开的连接数;
  • -d, --duration <T>:指定压测的持续时间;
  • -t, --threads <N>:指定要使用的线程数;
  • -s, --script <S>:指定要加载的 Lua 脚本文件;
  • -H, --header <H>:指定要添加到请求中的 HTTP 头;
  • --latency:指定要打印响应时间统计信息;
  • --timeout <T>:指定套接字/请求超时时间;

其中,数字参数可以使用 SI 单位(1k, 1M, 1G),时间参数可以使用时间单位(2s, 2m, 2h)。

压测示例

现在我们要对 OpenResty 程序的 hello 接口进行压测,我们可以使用以下命令:

wrk -c 100 -d 30s -t 4 --latency http://121.4.xxx.xx/hello

这条命令表示,利用 wrk 发起压力测试,连接数为 100,线程数为 4,持续 10 秒,并打印响应时间统计信息。

运行后,我们可以看到以下输出:

Running 30s test @ http://121.4.xxx.xx/hello
  4 threads and 100 connections
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency    60.74ms   94.62ms   1.82s    88.81%
    Req/Sec   710.91    118.29     1.02k    69.08%
  Latency Distribution
     50%   26.22ms
     75%   32.99ms
     90%  176.28ms
     99%  475.41ms
  84967 requests in 30.02s, 15.40MB read
  Socket errors: connect 0, read 0, write 0, timeout 2
Requests/sec:   2829.91
Transfer/sec:    525.08KB

我们可以从输出中看到以下信息:

  • 压测的配置和目标网址,
Running 30s test @ http://121.4.xxx.xx/hello
  4 threads and 100 connections
  • 每个线程的平均、标准差、最大和正负一个标准差占比的响应时间(Latency),
  Latency    60.74ms   94.62ms   1.82s    88.81%

这个数据和 QPS 一样重要,表示系统的响应速度,这个值越小越好。

  • 响应时间的分布情况:即有多少比例的请求在某个时间内完成,延时的分布百分比详细打印也就是下面展示信息,
  Latency Distribution
     50%   26.22ms
     75%   32.99ms
     90%  176.28ms
     99%  475.41ms
  • 总的请求数,
Requests/sec:   2829.91

这个数据表示服务端每秒钟处理了多少请求,这个值越大越好。

从这些信息中,我们可以看出 OpenResty 程序的性能还是很不错的,响应时间都在几毫秒级别,QPS 也很高。

鉴于我的 OpenResty 服务器配置只有 2核4g内存5MB带宽,测试结果大家理性看待,欢迎大家自己测试。

Lua 脚本

wrk 支持使用 Lua 脚本来定制压测场景,例如自定义 HTTP 方法、动态生成请求参数、修改请求头等。这样,我们可以模拟各种复杂和真实的用户行为和业务逻辑,使得压测结果更加贴近实际情况。wrk 的源码中提供了一些示例脚本,可以参考 https://github.com/wg/wrk/tree/master/scripts。

要使用 Lua 脚本,我们需要在命令行中指定 -s 参数,并给出脚本文件的路径。例如我们可以使用 post.lua 脚本来发送 POST 请求:

wrk -c 100 -d 10s -t 4 -s post.lua http://121.4.xxx.xx/hello

其中,post.lua 的内容如下:

wrk.method = "POST"
wrk.body   = "name=tom"
wrk.headers["Content-Type"] = "application/x-www-form-urlencoded"

这样,我们就可以模拟发送 POST 请求携带表单数据的场景。

一些常见问题

如何选择合适的参数?

wrk 的参数会影响压测的结果,因此我们需要根据实际情况选择合适的参数。一般来说,我们可以参考以下步骤:

  • 先使用单线程不断增加连接数,直到 QPS(每秒请求数)保持稳定或响应时间超过业务要求限制。在当前数值取得单线程最优连接数。
  • 单个连接线程数保持不变,不断增加线程数(建议到 CPU 核心数为止即可),直到整体出现 QPS 水平。
  • 如果 QPS 没有出现随着线程数增长则是目标服务器性能已经达到瓶颈,wrk 单线程即可压测出目标机器最优 QPS 值。
  • 如果 QPS 随着线程数增长则是 wrk 本机性能达到瓶颈,需要增加 wrk 机器数或者更换更高性能的 wrk 机器。

如何解决压测过程中出现的错误?

wrk 在压测过程中可能会出现一些错误,例如连接超时、连接拒绝、连接重置等。这些错误可能是由于目标服务器的性能不足、网络环境不稳定、防火墙限制等原因造成的。我们可以尝试以下方法来解决或减少错误:

  • 调整 wrk 的参数,例如减少连接数、增加超时时间等;
  • 检查目标服务器的资源使用情况,例如 CPU、内存、磁盘、网络等,优化服务器的配置或扩容服务器;
  • 检查网络环境,例如带宽、延迟、丢包等,优化网络设备或更换网络线路;
  • 检查防火墙设置,例如端口开放、流量限制等,放开 wrk 的访问权限或关闭防火墙;

总结

wrk 在对 OpenResty 程序的压测过程中,不失所望表现出了强大压测性能。希望通过本篇文章能让大家对 wrk 性能测试工具有一个较为全面的认识。

关注公众号【waynblog】每周分享技术干货、开源项目、实战经验、国外优质文章翻译等,您的关注将是我的更新动力!文章来源地址https://www.toymoban.com/news/detail-711499.html

到了这里,关于OpenResty入门之压测篇:压测工具界的 “悍马” wrk的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 压测工具Jmeter学习

    Apache JMeter是Apache组织开发的基于Java的压力测试工具。用于对软件做压力测试,它最初被设计用于Web应用测试,但后来扩展到其他测试领域。 它可以用于测试静态和动态资源,例如静态文件、Java 小服务程序、CGI 脚本、Java 对象、数据库、FTP 服务器等等。 除了Jmeter外,其它常

    2024年02月10日
    浏览(39)
  • 常用压测工具对比

    1.1 压测是什么   压测,即压力测试,是确立系统稳定性的一种测试方法,通常在系统正常运作范围之外进行,以考察其功能极限和隐患。   主要检测服务器的承受能力,包括用户承受能力(多少用户同时玩基本不影响质量)、流量承受等。 1.2 压测的意义 压测的目的就

    2024年02月13日
    浏览(40)
  • 性能压测工具 —— wrk

    一般我们压测的时候,需要了解衡量系统性能的一些参数指标,比如。 1.1 延迟 简单易懂。green:一般指响应时间 95线:P95。平均100%的请求中95%已经响应的时间 99线:P99。平均100%的请求中99%已经响应的时间 平均响应时间:所有请求的平均响应时间 最大响应时间:所有请求中最

    2024年03月15日
    浏览(54)
  • 压测工具之JMeter使用

    最近公司项目需要进行压测,查验S A A S 系 统中的多 租 户数据是否串库等问题! JMeter这款工具相信接触过测试的小伙伴都有所耳闻,即使是开发,应该也会或多或少的有所了解。 这就是今天的主角,我们是使用这款工具来完成我们对系统的压测。 接下来我们看一下如何使

    2024年02月16日
    浏览(55)
  • 【压测工具】Jmeter及Apifox

    Jmeter Apifox Apifox - API 文档、调试、Mock、测试一体化协作平台 - 接口文档工具,接口自动化测试工具,接口Mock工具,API文档工具,API Mock工具,API自动化测试工具

    2024年02月11日
    浏览(38)
  • Jmeter 压测工具使用手册[详细]

    jmeter 是 apache 公司基于 java 开发的一款开源压力测试工具,体积小,功能全,使用方便,是一个比较轻量级的测试工具,使用起来非常简 单。因为 jmeter 是 java 开发的,所以运行的时候必须先要安装 jdk 才可以。jmeter 是免安装的,拿到安装包之后直接解压就可以使用,同时它

    2024年02月13日
    浏览(40)
  • Fio工具详解【强大的IO性能压测工具】

    [time] runtime=time ​ 告诉fio在指定的时间段后终止处理。很难确定指定作业将运行多长时间,因此此参数可以方便的将总运行时间限制为给定时间。当省略单位时间,该数值以秒为单位进行解释。 time_based ​ 如果设置,即使文件被完全读取或写入,fio也将在指定的运行期间运行

    2024年02月01日
    浏览(40)
  • 常用的HTTP服务压测工具

    在项目正式上线之前,我们通常需要通过压测来评估当前系统能够支撑的请求量、排查可能存在的隐藏bug,同时了解了程序的实际处理能力能够帮我们更好的匹配项目的实际需求,节约资源成本。 响应时间(RT) :指系统对请求作出响应的时间. 吞吐量(Throughput) :指系统在单位

    2024年02月16日
    浏览(38)
  • 性能测试工具locust压测介绍

    官方文档:https://docs.locust.io/en/stable/index.html 1、初识locust         Locust 完全基于Python 编程语言,采用python 编写压测脚本,且所有请求完全基于requests库。除了 HTTP/HTTPS 协议,Locust 也可以测试其它协议的系统,只需要采用Python调用对应的库进行请求描述即可。locust是一个

    2024年02月07日
    浏览(71)
  • 【Java基础】压测工具JMeter使用简介

    Apache JMeter是一个基于Java开发的开源性能测试工具,由Apache软件基金会维护 JMeter最初设计用于Web应用测试,但它的功能已经扩展到其他测试领域。JMeter可以用于测试静态和动态资源,如静态文件、Java小服务程序、CGI脚本、Java对象、数据库和FTP服务器等。它能够对服务器、网

    2024年04月27日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包