Opencv系列之一:简介与基本使用

这篇具有很好参考价值的文章主要介绍了Opencv系列之一:简介与基本使用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 Opencv简介

Opencv是计算机视觉中经典的专用库,其支持多语言,跨平台,功能强大。Opencv-Python为Opencv提供了Python接口,使得使用者在Python中能够调用C/C++,在保证易读性和运行效率的前提下,实现所需的功能。

Opencv是由Gray Bradsky于1999年在英特尔创立,第一版于2000年问世。Vadim Pisarevsky加入Gary Bradsky,一起管理因特尔的俄罗斯软件Opencv团队。

2005年,Opencv用于Stanley,该车赢得了2005年DARPA挑战赛的冠军。后来,在Willow Garage的支持下,它的积极发展得以继续,由Gary Bradsky和Vadim Pisarevsky领导了该项目。Opencv现在支持与计算机视觉和机器学习有关的多种算法,并且正在日益扩展。

Opencv支持多种编程语言,例如C++, Python, Java等,并且可以再Windows , Linux , OS X , Android和IOS等不同平台上使用。基于CUDA和OpenCL的高速GPU操作的接口也在积极开发中。

Opencv-Python是用于Opencv的Python API,结合了Opencv C++ API和Python语言的最佳特性。

1.1 Opencv-Python

Opencv-Python是旨在解决计算机视觉问题的专用库
Python是由Guidovan Rossum发起的通用编程语言,很快就非常流行,主要是因为他的简单性和代码可读性。它使得程序员可以用较少的代码行表达想法,而不会降低可读性。

与C/C++之类的语言,Python速度较慢。也就是说,可以使用C/C++轻松扩展Python,这使得我们能够用C/C++编写计算机密集型代码并创建可用作Python模块的Python包装器。它给我们带来了两个好处: 首先,代码与原始C/C++代码一样快(因为它是在后台运行的实际C++代码), 其次,在Python中比C/C++编写代码更容易。Opencv-Python是原始Opencv C++实现的Python包装器。

Opencv-Python利用了Numpy,这是一个高度优化的库,用于使用MATLAB样式的语言进行数值运算。所有Opencv数组结构都与Numpy数组相互转换。这也使与使用Numpy的其他库(例如Scipy和Matplotlib)的集成变得更加容易。

1.2 应用领域

  • 人机互动
  • 物体识别
  • 图像分割
  • 人脸识别
  • 动作识别
  • 运动跟踪
  • 机器人
  • 运动分析
  • 机器视觉
  • 结构分析
  • 汽车安全驾驶

如上所述,opencv的功能十分强大,在各个领域大放异彩,由浅入深,本次我们先介绍图像编辑,简单的字母数字识别的相关部分,日后会继续开始人脸识别,图像分割,图像定位等等功能;

2 opencv-python安装与使用

首先我们需要安装一下环境

  1. python3:安装python3:python教程有详细的说明,网址安装python
  2. numpy:安装numpy:pip install numpy
  3. opencv-python:安装opencv-python: pip install opencv-python

安装完opencv-python后命令行打开python交互式环境:import cv2 成功,便说明成功安装了opencv-python

2.1 imread()

imread函数读取数字图像,先看一下官网对于该函数的定义

cv2.imread(path_of_image, intflag)

函数参数一: 需要读入图像的完整的路径
函数参数二: 标志以什么形式读入图像,可以选择一下方式:

  • cv2.IMREAD_COLOR: 加载彩色图像。任何图像的透明度都将被忽略。它是默认标志
  • cv2.IMREAD_GRAYSCALE:以灰度模式加载图像
  • cv2.IMREAD_UNCHANGED:保留读取图片原有的颜色通道
  • 1 :等同于cv2.IMREAD_COLOR
  • 0 :等同于cv2.IMREAD_GRAYSCALE
  • -1 :等同于cv2.IMREAD_UNCHANGED
color_img = cv2.imread("image_file/1.jpeg")
print(color_img.shape)

gray_img=cv2.imread("image_file/1.jpeg", cv2.IMREAD_GRAYSCALE)
print(gray_img.shape)

#把单通道图像保存后,再读取,仍然是3通道,相当于将单通道复制到3个通道保存
cv2.imwrite("image_file/gray_1.jpeg",gray_img)

2.2 threshold()

这个函数作用是将图片二值化,图像的二值化,就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果。二值化是图像分割的一种最简单的方法。二值化可以把灰度图像转换成二值图像。把大于某个临界灰度值的像素灰度设为灰度极大值,把小于这个值的像素灰度设为灰度极小值,从而实现二值化。

画图举例来说

cv.threshold()用来实现阈值分割,函数有4个参数:

  • 参数1:要处理的原图,一般是灰度图,这也是上一步中处理的
  • 参数2:设定的阈值
  • 参数3:最大阈值,一般为255
  • 参数4:阈值的方式,主要有5种,分别为:THRESH_BINARY,THRESH_BINARY_INV,THRESH_TRUNC,THRESH_TOZERO 和 THRESH_TOZERO_INV

实例如下:
ret, th1 = cv.threshold(img, 127, 255, cv.THRESH_BINARY)
ret, th2 = cv.threshold(img, 127, 255, cv.THRESH_BINARY_INV)
ret, th3 = cv.threshold(img, 127, 255, cv.THRESH_TRUNC)
ret, th4 = cv.threshold(img, 127, 255, cv.THRESH_TOZERO)
ret, th5 = cv.threshold(img, 127, 255, cv.THRESH_TOZERO_INV)

titles = [‘Original’, ‘BINARY’, ‘BINARY_INV’, ‘TRUNC’, ‘TOZERO’, ‘TOZERO_INV’]
images = [img, th1, th2, th3, th4, th5]

使用Matplotlib显示
for i in range(6):
plt.subplot(2, 3, i + 1)
plt.imshow(images[i], ‘gray’)
plt.title(titles[i], fontsize=8)
plt.xticks([]), plt.yticks([]) # 隐藏坐标轴
plt.show()

实际输出:

对应的官方中说明

2.3 morphologyEx()

形态学操作是根据图像形状进行的简单操作。一般情况下对二值化图像进行的操作。需要输入两个参数,一个是原始图像,第二个被称为结构化元素或核,它是用来决定操作的性质的。

两个基本的形态学操作是腐蚀和膨胀。他们的变体构成了开运算,闭运算,具体概念如下:

1)腐蚀:

就像土壤侵蚀一样,这个操作会把前景物体的边界腐蚀掉(但是前景仍然是白色)。这是怎么做到的呢?卷积核沿着图像滑动,如果与卷积核对应的原图像的所有像素值都是1,那么中心元素就保持原来的像素值,否则就变为零。
这会产生什么影响呢?根据卷积核的大小靠近前景的所有像素都会被腐蚀掉(变为0),所以前景物体会变小,整幅图像的白色区域会减少。这对于去除白噪声很有用,也可以用来断开两个连在一块的物体等。

2)膨胀:

与腐蚀相反,与卷积核对应的原图像的像素值中只要有一个是1,中心元素的像素值就是1。
所以这个操作会增加图像中的白色区域(前景)。一般在去噪声时先用腐蚀再用膨胀。因为腐蚀在去掉白噪声的同时,也会使前景对象变小。所以我们再对他进行膨胀。这时噪声已经被去除了,不会再回来了,但是前景还在并会增加。膨胀也可以用来连接两个分开的物体。

3)开运算:

先腐蚀,后膨胀。去除图像中小的亮点(CV_MOP_OPEN);

4)闭运算

先膨胀,后腐蚀。去除图像中小的暗点(CV_MOP_CLOSE);

kernel = cv.getStructuringElement(cv.MORPH_RECT, (1, 8))
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
cv.imshow("MORPH_OPEN_1", opening)
cv2.waitKey(0)

kernel = cv.getStructuringElement(cv.MORPH_RECT, (1, 8))
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
cv.imshow("MORPH_OPEN_1", closing)
cv2.waitKey(0)

3 应用案例

以上是opencv的简单使用,现在举一个实际应用的案例:识别验证码,其实按照上面3个步骤就可以将图片一步步处理,置灰,二值化,开运算,最后就可以识别了。那么首先原图如下:

1)首次处理效果,将图片灰度化,二值化,为提取轮廓做准备,二值化后,图片非黑即白两种,更有利于开闭运算处理

src = cv2.imread('image_file/before.png')
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)
cv.imshow("Binarization", binary)
cv2.waitKey(0)

2)基础上面二值化图片,对结果图进行开运算处理,去除噪音部分

kernel = cv.getStructuringElement(cv.MORPH_RECT, (8, 1))
open_out = cv.morphologyEx(binl, cv.MORPH_OPEN, kernel)
cv.imshow("MORPH_OPEN_2", open_out)
cv2.waitKey(0)

3)最后一次处理,将背景置为白色,并且识别图片识别码

cv.bitwise_not(open_out, open_out)  
cv.imshow("Transform", open_out)
textImage = Image.fromarray(open_out)
text = pytesseract.image_to_string(textImage)  
cv2.waitKey(0)

4)最后打印出验证码

4 总结

相信认真一起看完上述知识点,opencv-python已经对于图像的基本操作可以熟练掌握了,接下来会对数字图像的一些其他概念进行介绍,敬请期待~

作者:京东物流 张伟男

来源:京东云开发者社区 自猿其说Tech 转载请注明来源文章来源地址https://www.toymoban.com/news/detail-711512.html

到了这里,关于Opencv系列之一:简介与基本使用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Flume 简介及基本使用

    Apache Flume 是一个分布式,高可用的数据收集系统。它可以从不同的数据源收集数据,经过聚合后发送到存储系统中,通常用于日志数据的收集。Flume 分为 NG 和 OG (1.0 之前) 两个版本,NG 在 OG 的基础上进行了完全的重构,是目前使用最为广泛的版本。下面的介绍均以

    2024年02月07日
    浏览(37)
  • Docker·1(简介、安装、基本使用)

    虚拟机: 操作系统是一个很笨重的程序,即是啥都不干,虚拟本身都要占用很多内存和磁盘,并且启动很慢(操作系统要从头到尾把该检测的都检测了,该加载的都加载上)。 容器: 类似于码头的集装箱——相互隔离、长期反复使用、快速装载和卸载、规格标准,在港口和

    2024年02月02日
    浏览(30)
  • 使用 Clojure 进行 OpenCV 开发简介

    从 OpenCV 2.4.4 开始,OpenCV 支持使用与 Android 开发几乎相同的接口进行桌面 Java 开发。 Clojure 是由 Java 虚拟机托管的一种现代 LISP 方言,它提供了与底层 JVM 的完全互操作性。这意味着我们甚至应该能够使用 Clojure REPL(Read Eval Print Loop)作为底层 OpenCV 引擎的交互式可编程接口

    2024年01月16日
    浏览(52)
  • OrCAD(一)简介、安装与基本使用

    目录 安装 Crack 基本使用 新建工程 绘制元器件 去掉打开后开始页面 CAD,全称为管理软件计算机辅助设计(Management Software Computer Aided Design ,MS-CAD)是指运用计算机软件在图形化开发界面上进行工作。CAD并不是指某个特定的软件,而是某一类软件。 在这一类软件中,有一个软

    2024年02月02日
    浏览(33)
  • 04- OpenCV:Mat对象简介和使用

    目录 1、Mat对象与IplImage对象 2、Mat对象使用 3、Mat定义数组 4、相关的代码演示 1、Mat对象与IplImage对象 先看看Mat对象:图片在计算机眼里都是一个二维数组; 在OpenCV中, Mat 是一个非常重要的类,用于表示图像或矩阵数据。 (1)Mat对象OpenCV2.0之后引进的图像数据结构、 自动

    2024年01月20日
    浏览(45)
  • Strimzi Kafka Bridge(桥接)实战之一:简介和部署

    这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 在strimzi技术体系中,桥接(bridge)是很要的功能,内容也很丰富,因此将桥接相关的内容从《strimzi实战》系列中独立出来,成立桥接相关的系列文章,便于分类和专项深入 本文是《Strimzi Kafka Bridge(桥

    2024年02月08日
    浏览(36)
  • Doris-简介、架构、编译、安装和数据表的基本使用

    目录 1、Doris简介 2、Doris网址 3、Doris架构 3、编译和安装 3.1、软硬件需求 3.2、编译 3.2.1、安装Docker环境 3.2.2、使用Docker 开发镜像编译 3.3、集群部署 3.3.1、创建目录并拷贝编译后的文件 3.3.2、部署 FE 节点 3.3.3、配置 BE 节点 3.3.4、在 FE 中添加所有 BE 节点 3.3.5、启动 BE 3.3.6、部

    2024年02月21日
    浏览(48)
  • Java中Excel文件解析(POI简介及基本使用)

    在Java技术生态圈中,可以进行Excel文件处理的主流技术包括: Apache POI 、 JXL 、 Alibaba EasyExcel 等。 其中各个技术都有最适合的场景 Apache POI 基于 DOM 方式进行解析,将文件直接加载内存,所以速度较快,适合 Excel 文件数据量不大的应用场景。 JXL 只支持Excel 2003以下版本,所以

    2024年02月08日
    浏览(49)
  • LeetCode买卖股票之一:基本套路(122)

    这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 在LeetCode上,有数道和买卖股票有关的题目,覆盖了简单、中等、困难,要求都是选择低价时间买入、高价时间卖出,以求达到利润最大化 这类题型的特点就是:典型的动态规划题型,掌握套路后,

    2024年02月09日
    浏览(44)
  • k8s包管理工具helm简介及基本使用

     helm是k8s的包管理工具,类似于centos 的yum;  当前版本有helm2、helm3 相对来说helm3功能更加完善,使用更加方便 主要作用是相较于传统的k8s部署应用需要手工编排yaml文件(比如Deployment.yml、service.yml、ingress.yml等),使用helm可以快速部署应用。 helm3与helm2 的区别在于helm3删除了

    2024年02月14日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包