为了更好的阅读体验,请点击这里
这里只有板子没有原理QWQ
可实现
1.插入 x 数
2.删除 x 数(若有多个相同的数,只删除一个)
3.查询 x 数的排名(排名定义为比当前数小的数的个数 +1)
4.查询排名为 x 的数
5.求 x 的前驱(前驱定义为小于 x,且最大的数)
6.求 x 的后继(后继定义为大于 x,且最小的数)
原题 https://www.luogu.com.cn/problem/P3369
在 Ver1.0 基础上把指针板子修正成 C++ 的类方法版本了,null 指针使用 static 静态量来处理。然后仅需要实现类的方法中包含小于号的重载就可以使用这个名次树了。另外,这里所有涉及到的名次都是 1-index 的。
目前还有迭代器、\(O(n)\) 建树没有实现,剩下的功能都有所实现。查询排名为 \(x\) 的数如果 \(x \not \in [1, sz_{root}]\) 会 RE
,前驱和后继如果不存在会返回 null->v
。这个实现有点脑浆,所以可能以后还会改。文章来源:https://www.toymoban.com/news/detail-711546.html
请务必不要使用 std::swap
直接交换两个 Treap
,否则会析构删得什么都不剩!取而代之,可以使用成员函数中的 swap
。文章来源地址https://www.toymoban.com/news/detail-711546.html
#include <bits/stdc++.h>
using namespace std;
template<class T> class Treap {
public:
Treap() {}
~Treap() { _clear(root);}
void insert(T x) { _insert(root, x);}
void erase(T x) { _erase(root, x);}
int rank(T x) { return _GetRankOfVal(root, x);}
T kth(int x) { assert(1 <= x && x <= root->sz); return _GetValOfRank(root, x);}
T pre(T x) { Node *ans = null; query_pre(root, x, ans); return ans->v;}
T nxt(T x) { Node *ans = null; query_nxt(root, x, ans); return ans->v;}
bool empty() { return root->sz == 0;}
int size() { return root -> sz;}
void clear() { _clear(root);}
void swap(Treap<T>& rhs) { std::swap(root, rhs.root);}
private:
struct Node {
Node *ch[2];
T v;
int sz, r, cnt;
Node() { sz = r = cnt = 0;}
Node(const T &v):v(v) { ch[0] = ch[1] = null; r=rand(); sz = cnt = 1;}
bool operator < (const Node& rhs) const { return r < rhs.r;}
int cmp(const T& x) const {
if(!(x < v || v < x)) return -1;
return v < x;
}
void upd() { sz = ch[0] -> sz + ch[1] -> sz + cnt;}
};
static Node *null;
Node *root = null;
void rotate(Node* &o, const int &d) {
Node *k = o->ch[d^1]; o->ch[d^1] = k->ch[d]; k->ch[d] = o;
o->upd(); k->upd(); o = k;
}
void _insert(Node* &o, const T &x) {
if (o == null) { o = new Node(x); return;}
o->sz++;
int d = o->cmp(x);
if (d == -1) {o->cnt++; return;}
_insert(o->ch[d], x);
if (o->r < o->ch[d]->r) rotate(o, d^1);
o -> upd();
}
void _erase(Node* &o, const T &x) {
if (o == null) return;
int d = o->cmp(x);
if (d == -1) {
Node* u = o;
if (o->cnt > 1) {o->cnt--; o->sz--; return;}
if (o->ch[0] != null && o->ch[1] != null) {
int d2 = o->ch[0]->r > o->ch[1]->r;
rotate(o, d2); _erase(o->ch[d2], x);
}
else {
if (o->ch[0] == null) o = o->ch[1]; else o = o->ch[0];
delete u;
}
}
else _erase(o->ch[d], x);
if(o != null) o->upd();
}
int _GetRankOfVal(Node *&o, const T &x) {
if (o == null) return 1;
if (!(o->v < x || x < o->v)) return o->ch[0]->sz + 1;
else if (o->v < x) return o->ch[0]->sz + o->cnt + _GetRankOfVal(o->ch[1], x);
else return _GetRankOfVal(o->ch[0], x);
}
T _GetValOfRank(Node *&o, const int &k) {
if (o == null) return T();
if (!(o->ch[0]->sz < k)) return _GetValOfRank(o->ch[0], k);
else if(o->ch[0]->sz + o->cnt < k)
return _GetValOfRank(o->ch[1], k - o->ch[0]->sz - o->cnt);
return o->v;
}
void query_pre(Node *&o, const T &x, Node *&ans) {
if (o == null) return;
if (o->v < x) { ans = o; query_pre(o->ch[1], x, ans);}
else query_pre(o->ch[0], x, ans);
}
void query_nxt(Node *&o, const T &x, Node *&ans) {
if (o == null) return;
if (x < o->v) { ans = o; query_nxt(o->ch[0], x, ans);}
else query_nxt(o->ch[1], x, ans);
}
void _clear(Node*& o) {
if (o == null || o == NULL) return;
_clear(o -> ch[0]);
_clear(o -> ch[1]);
delete o;
return;
}
};
template<class T> typename Treap<T>::Node* Treap<T>::null = new Node();
struct AAA {
int a;
// AAA(int a = 0):a(a) {}
bool operator < (const AAA& rhs) const {
return a < rhs.a;
}
};
int main() {
#ifdef LOCAL
freopen("test.in", "r", stdin);
#endif
int n; scanf("%d",&n);
int op,y;
Treap<AAA> S;
for(int i=0;i<n;i++) {
scanf("%d%d",&op,&y);
AAA x = AAA{y};
switch(op) {
case 1: S.insert(x); break;
case 2: S.erase(x); break;
case 3: printf("%d\n",S.rank(x)); break;
case 4: printf("%d\n",S.kth(y).a); break;
case 5: printf("%d\n",S.pre(x).a); break;
case 6: printf("%d\n",S.nxt(x).a); break;
}
}
return 0;
}
到了这里,关于BST-Treap名次树指针实现板子 Ver2.1的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!