3D目标检测实战 | 详解2D/3D检测框交并比IoU计算(附Python实现)

这篇具有很好参考价值的文章主要介绍了3D目标检测实战 | 详解2D/3D检测框交并比IoU计算(附Python实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 交并比基本概念

交并比(Intersection Over Union, IoU)是度量两个目标检测框交叠程度的方式,公式如下

I o U = a r e a ( 文章来源地址https://www.toymoban.com/news/detail-712707.html

到了这里,关于3D目标检测实战 | 详解2D/3D检测框交并比IoU计算(附Python实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 目标检测中的IOU

    简单来说IOU就是用来度量目标检测中预测框与真实框的重叠程度。在图像分类中,有一个明确的指标准确率来衡量模型分类模型的好坏。其公式为: 这个公式显然不适合在在目标检测中使用。我们知道目标检测中都是用一个矩形框住被检测物体,又因为检测物体尺度不同,预

    2024年02月14日
    浏览(48)
  • 目标检测-计算IOU,mAP指标

    IoU,全称Intersection over Union,可翻译为交并比,是两个框交集与并集的比值。计算IoU的公式如下图,可以看到IoU是一个比值,即交并比。 在分子中,我们计算预测框和ground-truth之间的重叠区域;分母是并集区域,是预测框和ground-truth所包含的总区域。重叠区域和并集区域的比

    2024年02月12日
    浏览(36)
  • 目标检测结果IOU不同取值的含义 IoU=0.50与IoU=0.50:0.95

    Average Precision (AP)和Average Recall (AR) AP是单个类别平均精确度,而mAP是所有类别的平均精确度。 AP是Precision-Recall Curve曲线下面的面积。     曲线面积越大说明AP的值越大,类别的检测精度就越高。Recall是召回率,也叫查全率,Precision是准确率,也叫查准率,两者是相互矛盾的指

    2024年02月09日
    浏览(36)
  • YOLO目标检测IOU-thres理解

    YOLO 检测中有两个阈值参数,conf置信度比较好理解,但是IOU thres比较难理解。 IOU thres过大容易出现一个目标多个检测框;IOU thres过小容易出现检测结果少的问题。 以实例来理解:

    2024年02月16日
    浏览(36)
  • 【MMDetection3D】基于单目(Monocular)的3D目标检测入门实战

    本文简要介绍单目(仅一个摄像头)3D目标检测算法,并使用MMDetection3D算法库,对KITTI(SMOKE算法)、nuScenes-Mini(FCOS3D、PGD算法)进行训练、测试以及可视化操作。   单目3D检测,顾名思义,就是只使用一个摄像头采集图像数据,并将图像作为输入送入模型进,为每一个感兴

    2024年02月03日
    浏览(49)
  • 目标检测中的损失函数IoU、GIoU、DIoU、CIoU、SIoU

    IoU损失是目标检测中最常见的损失函数,表示的就是真实框和预测框的交并比,数学公式如下: I o U = ∣ A ∩ B ∣ ∣ A ∪ B ∣ IoU =frac{|A cap B|}{|A cup B|} I o U = ∣ A ∪ B ∣ ∣ A ∩ B ∣ ​ L o s s I o U = 1 − I o U Loss_{IoU}=1-IoU L o s s I o U ​ = 1 − I o U IoU损失会有两个主要的缺点 当

    2024年02月04日
    浏览(51)
  • 【目标检测中对IoU的改进】GIoU,DIoU,CIoU的详细介绍

    IoU为交并比,即对于pred和Ground Truth:交集/并集 1、IoU可以作为评价指标使用,也可以用于构建IoU loss = 1 - IoU 缺点: 2、对于pred和GT相交的情况下,IoU loss可以被反向传播,因为IoU不为0,可以计算梯度。但是二者不相交的话,梯度将会为0,无法优化。 3、pred和GT不相交时,Io

    2024年02月12日
    浏览(43)
  • 【目标检测算法】IOU、GIOU、DIOU、CIOU与YOLOv5损失函数

    classification loss 分类损失 localization loss, 定位损失(预测边界框与GT之间的误差) confidence loss 置信度损失(框的目标性 objectness of the box) 总的损失函数: classification loss + localization loss + confidence loss YOLOv5使用 二元交叉熵损失函数 计算类别 概率和目标置信度得分 的损失。 Y

    2024年01月19日
    浏览(46)
  • 【计算机视觉 | 目标检测】术语理解3:Precision、Recall、F1-score、mAP、IoU 和 AP

    在图像目标检测中,常用的评估指标包括以下几项: 精确率(Precision):也称为查准率,表示被分类为正类别的样本中真正为正类别的比例。计算公式为:Precision = TP / (TP + FP),其中TP是真正例(模型正确预测为正类别的样本数),FP是假正例(模型错误预测为正类别的样本数

    2024年02月13日
    浏览(45)
  • 【目标检测】概念理解:region proposal、bounding box、anchor box、ground truth、IoU、NMS、RoI Pooling

    最近刚接触图像识别,理解一些概念十分困难,尤其是动不动就冒出个看不懂的英语,让人抓狂。查了不少资料后做一个总结并加上一些自己的理解,理解若有误,烦请大家指出,相互学习。 本文主要对 region proposal、anchor box、bounding box、bounding box regression、ground truth、IoU、

    2024年02月05日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包