动态规划:两个数组的dp问题(C++)

这篇具有很好参考价值的文章主要介绍了动态规划:两个数组的dp问题(C++)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

动态规划往期文章:

  1. 动态规划入门:斐波那契数列模型以及多状态
  2. 动态规划:路径和子数组问题
  3. 动态规划:子序列问题
  4. 动态规划:回文串问题

两个数组的dp问题

1.最长公共子序列(中等)

链接:最长公共子序列

  • 题目描述
    动态规划:两个数组的dp问题(C++),算法,动态规划,c++,算法,力扣,笔记

  • 做题步骤

  1. 状态表示
    对于两个数组的dp,采用一维dp是没有办法清晰的表示状态的,故对于两个数组的dp我们通常采用二维数组

    故定义状态表示为dp[i] [j]:s1的[0,i]区间和s2的[0,j]区间之间的最长公共子序列

  2. 状态转移方程
    对s1的[0,i]区间和s2的[0,j]区间,我们分情况讨论:
    (1)s1[i] == s2[j],我们只需要知道s1的[0,i - 1]区间和s2的[0,j - 1]区间之间的最长公共子序列,然后加一即可,即dp[i] [j] = dp[i - 1] [j - 1] + 1。(比如s1 = "abc"和s2 = “akc”,就是"ab"和"ak"的最长公共子序列加1)

    (2)s1[i] != s2[j],这个这时最长公共子序列⼀定不会同时以s1[i]和s2[j]结尾
    ①有可能以s2[j]结尾,去s1的 [0, i - 1]以及s2的 [0, j] 区间内找:此时最大长度为dp[i - 1] [j]。(比如s1 = “ack”,s2 = “bc”)
    ②有可能以s1[i]结尾,去s1的[0, i]以及s2的 [0, j - 1] 区间内找:此时最大长度为dp[i] [j - 1]。(比如s1 = “ac”,s2 = “cb”)
    ③也有可能两者都不是结尾,但这个情况是包括在前两个情况中的,一定小于等于前两者。(比如s1 = “acd”,s2 = “aca”)
    对于(2)情况,dp[i] [j] = max(dp[i - 1] [j], dp[i] [j - 1])

  3. 初始化

动态规划:两个数组的dp问题(C++),算法,动态规划,c++,算法,力扣,笔记

  1. 填表顺序
    参照上面的图,填表顺序为行从上到下,每一行从左到右

  2. 返回值
    依据状态表示,返回值为dp[m] [n](m,n分别为s1、s2长度)。

  • 代码实现
class Solution {
public:
    int longestCommonSubsequence(string s1, string s2) {
        int m = s1.size(), n = s2.size();
        vector<vector<int>> dp(m + 1, vector<int>(n + 1));
        //处理下标映射
        s1 = " " + s1, s2 = " " + s2;
        for(int i = 1; i <= m; i++)
            for(int j = 1; j <= n; j++)
            {         
                if(s1[i] == s2[j])
                    dp[i][j] =  dp[i - 1][j - 1] + 1;         
                else
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);               
            }     
        return dp[m][n];
    }
};

2.不同的子序列(困难)

链接:不同的子序列

  • 题目描述
    动态规划:两个数组的dp问题(C++),算法,动态规划,c++,算法,力扣,笔记

  • 做题步骤

  1. 状态表示
    这个题目虽然标的是困难,但是有前面的做题经验其实还好。
    对这种问题,我们采用二维表,定义状态表示为dp[i] [j]:t的[0, j]区间在s的[0, i]区间出现的方案个数

  2. 状态转移方程
    对s的[0,i]区间和t的[0,j]区间,我们分情况讨论:
    (1)s[i] == t[j]
    ①比如t = "rab"和s = “rabcb”,第一种同时选s[i]、t[j]为结尾,这个时候的方案数为t的[0, j - 1]区间在s的[0, i - 1]区间出现的方案数(ra在rabc中出现的次数),即dp[i - 1] [j - 1]。
    ②第二种是不同时选s[i]、t[j]为结尾,这个时候的方案数为t的[0, j]区间在s的[0, i - 1]区间出现的方案数(t = "rab"在s的"rabc"中出现的次数),即dp[i - 1] [j]。
    两种都符合要求:故(1)情况dp[i] [j] = dp[i - 1] [j] + dp[i - 1] [j - 1]

    (2)s[i] != t[j]
    这个时候只有一种选择,即(1)的②情况,故(2)情况dp[i] [j] = dp[i - 1] [j]

  3. 初始化
    这个题目的初始化和上一题相似,多开一行一列,把多的一行一列当作空串。其中当t为空串时在s中一定有一种方案(s也拿一个空串出来),故初始化第一列为1

  4. 填表顺序
    填表不明白参考第一题,填表顺序为行从上到下,每一行从左到右

  5. 返回值
    依据状态表示,返回值为dp[m] [n](m,n分别为s、t长度)。

  • 代码实现
class Solution {
public:
    int numDistinct(string s, string t) {
        int m = s.size(), n = t.size();
        //这个题目中间填表的时候会溢出,而且溢的不是一点点
        //不过溢出的部分不影响结果,用uint即可
        vector<vector<unsigned int>> dp(m + 1, vector<unsigned int>(n + 1));
        s = " " + s, t =  " " + t;  //处理下标映射
        for(int i = 0; i < m; i++)  dp[i][0] = 1;
        for(int i = 1; i <= m; i++)
            for(int j = 1; j <= n; j++)
            {
                dp[i][j] = dp[i - 1][j];
                if(s[i] == t[j])  //s[i] == t[j]会多一种选择
                    dp[i][j] += dp[i - 1][j - 1];                         
            }
        return dp[m][n];
    }
};

3.通配符匹配(困难)

链接:通配符匹配

  • 题目描述
    动态规划:两个数组的dp问题(C++),算法,动态规划,c++,算法,力扣,笔记

  • 做题步骤

  1. 状态表示
    依据前面的做题经验,我们定义一个二维表,定义状态表示为dp[i] [j]:p的[0, j]区间能否匹配s的[0, i]区间

  2. 状态转移方程
    对s的[0,i]区间和p的[0,j]区间,我们分情况讨论:
    (1)s[i] == p[j]或者p[j] == '?'时,dp[i] [j] = dp[i - 1] [j - 1],即只要p的[j - 1]区域能和s的[i - 1]区域匹配,p的[0, j]就可以和s的[0, i]匹配。(比如s = “abc”,p = “ab?”)

    (2)p[j] == ’ * ’ 的情况,这个时候有三种可能使得p[0, j]和s[0, i]匹配:
    p的[0, j]可以和s的[0, i - 1]匹配,p[j] == ’ * ’ 在表示原来的字符串基础上加上s[i]即可,即dp[i - 1] [j]为真dp[i] [j]为真。(比如s = “abc”,p = “a*”,"ab"和"a*"是匹配的)
    p的[0, j - 1]可以和s的[0, i]匹配, ’ * ’ 这个时候匹配空串即可,即dp[i] [j - 1]为真dp[i] [j]为真。(比如s = “ab”,p = “ab*”)
    ③p[0, j - 1]匹配和s的[0, i - 1],p[j] == ’ * ’ 去替换s[i],但这种情况实际是可以被归于第一种情况的,如果s[0, i - 1]和p[0, j - 1]匹配,那么s[0, i - 1]和p[0 , j]也一定会匹配,这个时候 ’ * ’ 做空字符串,即dp[i - 1] [j - 1]为真 == dp[i - 1] [j]为真

    以上情况只要一个为真dp[i] [j]就为真。

  3. 初始化
    和前面一样,为了避免越界以及方便初始化,我们引入空串的概念,多开一行和一列。
    ①其中两者都为空串可匹配,即dp[0] [0] = true。

    ②s为空串,p不为空串(第一行除去[0, 0])的时候如果p的[0, j]区间为连续的 ’ * ’ 也是可以匹配空串的,dp[0] [0……j] = true。([0, j]区间表示连续的 ’ * ’ )

    ③p为空串,s不为空串(第一列除去[0, 0]),这个时候不可能匹配,第一列除开[0][0]其它都初始化为false。

  4. 填表顺序
    填表不明白参考第一题,填表顺序为行从上到下,每一行从左到右

  5. 返回值
    依据状态表示,返回值为dp[m] [n](m,n分别为s、p长度)。

  • 代码实现
class Solution {
public:
    bool isMatch(string s, string p) {
        int m = s.size(), n = p.size();
        s = " " + s, p = " " + p;   //处理下标映射
        //dp[i][j]:p的[0, j]区间能否匹配s的[0, i]区间
        vector<vector<bool>> dp(m + 1, vector<bool>(n + 1));
        dp[0][0] = true;  
        for(int j = 1; j <=n; j++)  //初始化s为空串,p有连续'*'可匹配的情况
        {
            if(p[j] == '*')
                dp[0][j] = true;
            else
                break;  //出现非'*'直接结束循环,后面不可能匹配了
        }
        for(int i = 1; i <= m; i++)       
            for(int j = 1; j <= n; j++)
            {
                if(p[j] == '*')
                    dp[i][j] = dp[i - 1][j] || dp[i][j - 1];
                else if(s[i] == p[j] || p[j] == '?')
                    dp[i][j] = dp[i - 1][j - 1];
            }
        return dp[m][n];
    }
};

4.正则表达式(困难)

链接:正则表达式

  • 题目描述
    动态规划:两个数组的dp问题(C++),算法,动态规划,c++,算法,力扣,笔记

  • 做题步骤

  1. 状态表示
    有前面的做题经验,我们定义一个二维表,定义状态表示为dp[i] [j]:p的[0, j]区域能否匹配s的[0, i]区域

  2. 状态转移方程
    这个题目的重点:"a*"说明这个部分可以出现多次,也可以出现0次,即a表示空串,所以分析的时候应该把"字符 + "当作一个整体来考虑

    对s的[0,i]区间和p的[0,j]区间,我们分情况讨论:
    (1)s[i] == p[j]或p[j] == ’ . ’ ,只需要p的[0, j - 1]和s的[0, i - 1]匹配即可,即dp[i - 1] [j - 1]为真dp[i] [j]就为真。(比如s = "abc"和p = “ab.”)

    (2)p[j] == ’ * ’ 的情况,这个时候有三种可能使得p[0, j]和s[0, i]匹配:
    ①p[0, j - 2]和s[0, i]匹配,后面的"字符+"表示空串。即dp[i] [j - 2]为真dp[i] [j]就为真。(比如s = “abc”,p = “abcg*”,p后面的"g*"可以直接作空串)
    ②p[0, j]和s[0, i - 1]匹配,原本的"字符+"需要多表示一个字符。
    但这里多表示的字符是固定的,也就是说必须满足p[j - 1] == s[i] 或 p[j - 1] == ’ . ’ ,这个多表示的字符才能符合要求。即满足前面条件dp[i - 1] [j]为真dp[i] [j]就为真
    (比如s = “abbb”,p = “ab*”,其中"ab*"是可以匹配"abb"的,刚好"b*"多表示一个’ b ’ 符合匹配要求。如果s = "abbc"就p就无法匹配s了)

    以上情况只要一个为真dp[i] [j]就为真。

  3. 初始化
    为了避免越界已经方便初始化,我们引入空串的概念,多开一行一列。
    ①其中两者都为空串可匹配,即dp[0] [0] = true。

    ②当s为空串,p不为空串(第一行除去[0, 0])的时候如果p为连续的"字符 + * + 字符 + * ……",让这些"字符+ *"全都作空串,是可以匹配s的。即dp[0] [j] = true(j = 2; j <= n; j += 2)。

    ③p为空串,s不为空串(第一列除去[0, 0]),这个时候不可能匹配,第一列除开[0] [0]其它都初始化为false。

  4. 填表顺序
    填表不明白参考第一题,填表顺序为行从上到下,每一行从左到右

  5. 返回值
    依据状态表示,返回值为dp[m] [n](m,n分别为s、p长度)。

  • 代码实现
class Solution {
public:
    bool isMatch(string s, string p) {
        int m = s.size(), n = p.size();
        //处理下标映射
        s = " " + s,  p = " " + p;
        //dp[i][j]:p的[0,j]区域能否和s的[0,i]区域匹配
        vector<vector<bool>> dp(m + 1, vector<bool>(n + 1));
        dp[0][0] = 1;  //空串可以匹配空串
        for(int j = 2; j <= n; j += 2)  //s为空串时p为连续的"字符 + *"是可以匹配的
        {
            if(p[j] == '*') 
                dp[0][j] = true;
            else
                break;
        }
       
        for(int i = 1; i <= m; i++)
            for(int j = 1; j <= n; j++)
            {
                if(p[j] == '*')
                {
                    dp[i][j] = dp[i][j-2] || (p[j-1] == '.' || p[j-1] == s[i]) && dp[i-1][j];
                }
                else if(s[i] == p[j] || p[j] == '.')
                {
                    dp[i][j] = dp[i - 1][j - 1];
                }
            }
        return dp[m][n];
    }
};

5.交错字符串(中等)

链接:交错字符串

  • 题目描述
    动态规划:两个数组的dp问题(C++),算法,动态规划,c++,算法,力扣,笔记

  • 做题步骤

  1. 状态表示
    有前面的做题经验,我们定义一个二维表,定义状态表示为dp[i] [j]:s1的[0, i]区间和s2的[0, j]区间能否交错组成s3的[0, i + j]区间

  2. 状态转移方程
    对s1的[0,i]区间和s2的[0,j]区间能否交错组成s3的[0, i + j]区间,我们分情况讨论:
    (1)s1[i] == s3[i + j]。这个时候只要s1的[0, i - 1]区间和s2的[0, j]区间可以组成s3的[0,i + j - 1]区间即真,即dp[i] [j] = (s1[i] == s3[i + j] && dp[i - 1] [j])

    (2)s2[j] == s3[i + j]。这个时候只要s1的[0, i]区间和s2的[0, j - 1]区间可以组成s3的[0,i + j - 1]区间即真,即dp[i] [j] = (s2[j] == s3[i + j] && dp[i] [j - 1])

    以上情况只要一个为真dp[i] [j]就为真。

  3. 初始化
    为了避免越界以及方便初始化,我们引入空串的概念,多开一行一列。
    ①其中s1和s2都为空串可以组成空串s3,即dp[0][0] = true。

    ②当s1为空串,s2不为空串(第一列除去[0, 0])的时候可以由s2单独组成s3,前提是相等。即dp[0] [j] = true([1, j]区间s2与s3相等)。

    ③当s2为空串,s1不为空串(第一行除去[0, 0])的时候可以由s1单独组成s3,前提是相等。即dp[i] [0] = true([1, i]区间s1与s3相等)。

  4. 填表顺序
    填表不明白参考第一题,填表顺序为行从上到下,每一行从左到右

  5. 返回值
    依据状态表示,返回值为dp[m] [n](m,n分别为s1、s2长度)。

  • 代码实现
class Solution
{
public:
    bool isInterleave(string s1, string s2, string s3) 
    {
        int m = s1.size(), n = s2.size();
        if(m + n != s3.size()) return false;  //两者相加比s3长度小,一定没办法组成的
        s1 = " " + s1, s2 = " " + s2, s3 = " " + s3;  //处理下标映射
        //dp[i][j]:s1的[1,i]区间和s2的[1,j]区间能否交错组成s3的[1,i+j]区间
        vector<vector<bool>> dp(m + 1, vector<bool>(n + 1));
        dp[0][0] = true;
        for(int j = 1; j <= n; j++) // 初始化第⼀⾏,即s1为空,s2单独组成s3
        {
            if(s2[j] == s3[j]) dp[0][j] = true;
            else break;
        }
        for(int i = 1; i <= m; i++) // 初始化第⼀列,即s2为空,s1单独组成s3
        {
            if(s1[i] == s3[i]) dp[i][0] = true;
            else break;
        }
        
        for(int i = 1; i <= m; i++)
            for(int j = 1; j <= n; j++)
                dp[i][j] = (s1[i] == s3[i + j] && dp[i - 1][j])
                        || (s2[j] == s3[i + j] && dp[i][j - 1]);        
        return dp[m][n];
    }
};

6.两个字符串的最小ASCII删除和(中等)

链接:两个字符串的最小ASCII删除和

  • 题目描述
    动态规划:两个数组的dp问题(C++),算法,动态规划,c++,算法,力扣,笔记

  • 做题步骤

  1. 状态表示
    有前面的做题经验,我们定义一个二维表,定义状态表示为dp[i] [j]:s1的[0, i]区间和s2的[0, j]区间要达到相同的最小删除消耗

  2. 状态转移方程
    对s1的[0,i]区间和s2的[0,j]区间如何相同,我们分情况讨论:
    (1)s1[i] == s2[j]时,只需要让s1的[1, i - 1]和s2[1, j - 1]相同,即dp[i] [j] = dp[i - 1] [j - 1]

    (2)s1[i] != s2[j]时,有两种选择:
    ①让s1的[1, i - 1]和s2的[1, j]相同,把多余的s1[i]删除,即dp[i] [j] = dp[i - 1] [j] + s1[i]
    ②s1的[1, i]和s2的[1, j -1]相同,把多余的s2[j]删除,即dp[i] [j] = dp[i] [j - 1] + s2[j]
    取①②情况的最小值即可,即(2)情况dp[i][j] = min(dp[i] [j - 1] + s2[j], dp[i - 1] [j] + s1[i])

    这里提一下(1)情况的消耗是一定小于等于(2)的消耗,比如我一个短串和一个长串达到相等的消耗了x。现在我在短串后面加一些字符,想达到相等的话消耗一定会大于等于x。

  3. 初始化
    为了避免越界以及方便初始化,我们引入空串的概念,多开一行一列。
    ①当s1和s2都为空串,消耗为0,即dp[0] [0] = 0。

    ②当s1为空串,s2不为空串(第一列除去[0, 0])的时候s2必须全部删除一直到为空串。即dp[0] [j] = dp[0] [j - 1] + s2[j] (j = 1; j <= n; j++)。

    ③当s2为空串,s1不为空串(第一行除去[0, 0])的时候s1必须全部删除一直到为空串。即dp[i] [0] = dp[i - 1] [0] + s1[i] (i = 1; i <= m; i++)。

  4. 填表顺序
    填表不明白参考第一题,填表顺序为行从上到下,每一行从左到右

  5. 返回值
    依据状态表示,返回值为dp[m] [n](m,n分别为s1、s2长度)。

  • 代码实现
class Solution {
public:
    int minimumDeleteSum(string s1, string s2) {
        int m = s1.size(), n = s2.size();
        s1 = " " + s1, s2 = " " + s2;   //处理下标映射
        //dp[i][j]:s1的[1,i]区间和s2的[1,j]区间要达到相同的最小删除消耗
        vector<vector<int>> dp(m + 1, vector<int>(n + 1));
        //s1为空串,s2要删除为空串的最小消耗
        for(int j = 1; j <= n; j++)
            dp[0][j] = dp[0][j - 1] + s2[j];
        //s2为空串,s1要删除到空串的最小消耗
        for(int i = 1; i <= m; i++)
            dp[i][0] = dp[i - 1][0] + s1[i];

        for(int i = 1; i <= m; i++)
            for(int j = 1; j <= n; j++)
            {
                if(s1[i] == s2[j])
                    dp[i][j] = dp[i - 1][j - 1];
                else
                    dp[i][j] = min(dp[i][j - 1] + s2[j], dp[i - 1][j] + s1[i]);
            }
        return dp[m][n];
    }
};

7.最长重复子数组(中等)

链接:最长重复子数组

  • 题目描述
    动态规划:两个数组的dp问题(C++),算法,动态规划,c++,算法,力扣,笔记

  • 做题步骤

  1. 状态表示
    这个题不难,但是注意它是子数组而不是子序列,我们用前面的方式定义状态表示是会出错的,比如我定义状态表示为dp[i] [j]:n1的[0, i]区间与n2的[0, j]区间中的公共最长子数组长度。
    拿n1 = [3, 1, 1]和n2 = [1, 0, 1]举例,n1的[3, 1]区间和n2的[1, 0]区间公共最长子数组长度为1,当n1[2] == n2[2]的时候,公共最长子数组是没办法算的,你想dp[i - 1][j - 1] + 1是绝对不行的,因为n1[2]和n2[2]不一定能接在这个最长子数组后面,子数组必须是连续的!!!

    前面以区间为关注对象,没办法推导状态转移方程,那我们就以n1[i]和n2[j]为子数组结尾进行分析。
    我们定义一个二维表,定义状态表示为dp[i] [j]:同时以n1的i位置和n2的j位置结尾的公共最长子数组长度

  2. 状态转移方程
    对n1[i]和n2[j],我们分情况讨论:
    (1)n1[i] == n2[j]时,可以同时接在以n1[i - 1]和n2[j - 1]为结尾的公共最长子数组后面,长度加1,即dp[i] [j] = dp[i - 1] [j - 1] + 1。

    (2)n1[i] != n2[j]时,同时以n1[i]和n2[j]为结尾的公共最长子数组不存在,即dp[i] [j] = 0。

  3. 初始化
    为了避免越界,我们多开一行一列,dp数组下标从1开始,多出来的一行一列初始化为0即可。(注意处理与n1和n2数组的下标映射,因为n1和n2数组是从下标0开始的)

  4. 填表顺序
    填表顺序为行从上到下,每一行从左到右

  5. 返回值
    没法直接确定最长子数组的结尾,所以一边dp一边更新最大值文章来源地址https://www.toymoban.com/news/detail-712920.html

  • 代码实现
class Solution {
public:
    int findLength(vector<int>& n1, vector<int>& n2) {
        int m = n1.size(), n = n2.size();
        //dp[i][j]表示以nums1的i位置和nums2的j位置结尾的公共最长子数组长度
        vector<vector<int>> dp(m + 1, vector<int>(n + 1));
        int ret = 0;
        for(int i = 1; i <= m; i++)
            for(int j = 1; j <= n; j++)
            {
                if(n1[i - 1] == n2[j - 1])  //注意下标映射
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                ret = max(ret, dp[i][j]);
            }
        return ret;
    }
};

到了这里,关于动态规划:两个数组的dp问题(C++)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • C++ DP算法,动态规划——背包问题(背包九讲)

    有N件物品和一个容量为 V V V 的背包。放入第i件物品耗费的空间是 C i C_i C i ​ ,得到的价值是 W i W_i W i ​ 。 求解将哪些物品装入背包可使价值总和最大。 这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。 用子问题定义状态:即 F [ i , v ] F[i, v] F

    2024年02月16日
    浏览(51)
  • 【动态规划】两个数组问题

    题目链接 状态表示 dp[i][j] 表示 s1 0 到 i 区间内,以及时s2 0 到 j 区间内所有的子序列中,最长的公共子序列 状态转移方程 根据最后一个位置的请款分类讨论。 初始化 关于字符串的dp问题,空串是有研究意义的。引入空串的概念之后会方便我们的初始化 这里还可以使用之前

    2024年02月11日
    浏览(35)
  • 动态规划(DP)(算法笔记)

    本文内容基于《算法笔记》和官方配套练题网站“晴问算法”,是我作为小白的学习记录,如有错误还请体谅,可以留下您的宝贵意见,不胜感激。 动态规划(Dynamic Programming,DP)是一种用来解决一类最优化问题的算法思想。简单来说,动态规划将一个复杂的问题分解成若干个子

    2024年02月05日
    浏览(47)
  • C++动态规划-线性dp算法

    莫愁千里路 自有到来风 CSDN 请求进入专栏                                    X 是否进入《 C++ 专栏》? 确定 目录  线性dp简介 斐波那契数列模型  第N个泰波那契数 思路: 代码测试:  三步问题 思路: 代码测试: 最小花费爬楼梯 思路: 代码测试:  路径问题 数字三

    2024年02月19日
    浏览(48)
  • c++ 算法之动态规划—— dp 详解

    dp 是 c++ 之中一个简单而重要的算法,每一个 OIer 必备的基础算法,你知道它究竟是什么吗? 目录 一、简介         1.为什么不能贪心?         2.揭秘 dp   二、应用         1.定义         2.边界值         3.动态转移方程         4.结果         5.代码

    2024年04月09日
    浏览(48)
  • 【算法】动态规划(dp问题),持续更新

    介绍本篇之前,我想先用人话叙述一般解决动态规划问题的思路: 动态规划的问题,本身有许多产生结果的可能,需要在具体题目下得到满足某个条件的解。 如何得到呢? 我们就需要根据这个具体问题,建立一个状态表( dp 表 ),在这张 dp 表中的每一个位置的数据都有明

    2024年02月04日
    浏览(48)
  • 动态规划算法刷题笔记【状压dp】

    a1 == 1 判断是否为奇数,如果为1,则为奇数 因为奇数二进制末位一定是1,所以 与1 得到的结果是1 这里,114——2 14 ——第15位是1,可以表示14个1 i(1j)—— 从0开始是因为,原本第1位就是1。所以j=0时,对应的就是 i 的最低位 F l o y d Floyd Fl oy d 算法: n o w ∣ f l a g = = f l

    2024年02月11日
    浏览(43)
  • C++ 动态规划 数位统计DP 计数问题

    给定两个整数 a 和 b ,求 a 和 b 之间的所有数字中 0∼9 的出现次数。 例如,a=1024,b=1032 ,则 a 和 b 之间共有 9 个数如下: 1024 1025 1026 1027 1028 1029 1030 1031 1032 其中 0 出现 10 次,1 出现 10 次,2 出现 7 次,3 出现 3 次等等… 输入格式 输入包含多组测试数据。 每组测试数据占一

    2024年02月20日
    浏览(42)
  • 【数位dp】【动态规划】C++算法:233.数字 1 的个数

    视频算法专题 动态规划汇总 给定一个整数 n,计算所有小于等于 n 的非负整数中数字 1 出现的个数。 示例 1: 输入:n = 13 输出:6 示例 2: 输入:n = 0 输出:0 提示: 0 = n = 10 9 本题比较简单,主要讲封装类。m_vPre记录上一位所有状态,程序结束时,记录的是最后一位的所有

    2024年01月16日
    浏览(42)
  • 算法基础复盘笔记Day10【动态规划】—— 线性DP

    ❤ 作者主页:欢迎来到我的技术博客😎 ❀ 个人介绍:大家好,本人热衷于 Java后端开发 ,欢迎来交流学习哦!( ̄▽ ̄)~* 🍊 如果文章对您有帮助,记得 关注 、 点赞 、 收藏 、 评论 ⭐️⭐️⭐️ 📣 您的支持将是我创作的动力,让我们一起加油进步吧!!!🎉🎉 1. 题目

    2023年04月21日
    浏览(83)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包