自动驾驶,从“宠儿”走进“淘汰赛”

这篇具有很好参考价值的文章主要介绍了自动驾驶,从“宠儿”走进“淘汰赛”。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

自动驾驶,从“宠儿”走进“淘汰赛”,自动驾驶,人工智能,机器学习

从“一步到位”到场景、技术降维。从拼落地路径,到拼雷达、算力,再到如今的性价比之争,自动驾驶似乎变得愈发“接地气”。 

作者|斗斗 

编辑|皮爷 

出品|产业家 

比起去年,黄文欢和张放今年显得更加忙碌。

“自动驾驶赛道,今年都非常卷。” 张放是智行者研发中心副总经理,在他的描述中今年智行者的产品似乎将性价比做到了新的高度。

“除了干线物流场景以外,我们在做更多的布局。”作为挚途科技解决方案总监,黄文欢认为,打造一款极具性价比的产品更为重要。

自动驾驶赛道,也开始卷了。

最近几年,自动驾驶技术发展不及预期,资本逐渐冷静下来,L4级自动驾驶迎来“拐点”。已经逐渐从技术研究阶段演进至产品落地阶段,自动驾驶全栈解决方案提供商也都各自以“场景”为战。除此之外,头部车企纷纷宣布城市场景的量产落地计划。

“回血”“活下去”成为诸多自动驾驶厂商的重要命题。

一、自动驾驶,站在“U字形”的底部

2023年,由于市场环境的不确定性和不稳定性,使得大部分行业或多或少面临一些难题。更为重要的是这种形势下的经济走向不是一个“V字型”的一个触底反弹,而是一个“U字形”的曲线,企业们需要渡过较长的困难时期。

自动驾驶赛道亦是如此。

“我们需要对业务方向做出一些微调,为在“U字形”的底部分走得更远。”黄文欢对产业家说,挚途科技今年最大的变化主要有两点,一是开发高级别自动驾驶的全栈式软硬件解决方案;二是扩展具体场景应用的项目。

“一款极具性价比且智能化程度符合市场需求的车,更容易被接受。”黄文欢直言,这种变化的核心目的其实是能够给公司一个很好的成长性和营收。

目前,挚途科技L2+自动驾驶的算力,在实现相同功能下,可以达到国内算力需求最低。

自动驾驶,从“宠儿”走进“淘汰赛”,自动驾驶,人工智能,机器学习

作为一家由主机厂发起的自动驾驶公司,挚途科技似乎对于如何让自动驾驶技术落地,有着越发务实的理解。

另一边,将性价比践行到底的亦有智行者。

“在低速、高速的场景下,今年客户又提了更高的需求。”张放对产业家说。

例如,最低速场景中,一个清洁类的设备,如何在地下停车场、大型的商超等细分场景下打造更加垂直、有针对性的能力;能否通过云端协同,实现整体调度……

在高速场景中,随着自动驾驶技术的发展,以及人们对自动驾驶认知日渐加深,对其技术同样提出了更高的要求。例如进一步解决长尾问题。

在客户更高的要求下,智行者也在不断打造更高性价比的解决方案。

具体来看,在算力成本上,之前大多会选用英伟达,而如今则更多以国内芯片为主,以减少算力成本;此外,通过不依赖高清地图的技术方案,减少高清地图这方面的成本;通过对摄像头的优化,使得行车和泊车的这种摄像头得以复用。

自动驾驶,从“宠儿”走进“淘汰赛”,自动驾驶,人工智能,机器学习

“今年,自动驾驶赛道对于成本的控制会更加重视,只有更高性价比方案,才能被选择。”

如今,这种自动驾驶奔向高性价比、实用的的趋势,早已蔓延至整个赛道。例如,豪末智行也于近日发布了三款千元级HPilot产品,主打“极致性价比”。

“乘用车销量和智能化指数都在稳步提升,同时智能驾驶渗透率与价格却呈反向增长。”毫末董事长张凯认为,更具性价比的行泊一体的域控方案将成为主流。

然而,在更高的要求下还要保证产品的高性价比,却有些相悖。

事实上,L4级自动驾驶技术的落地路径,除了单车智能,还有车路协同。“从整体的系统来看,车路协同路径要比单车智能成本低。”张放说道。

具体来看,在技术层面,通过车路分配的不同传感器之间协同,一定程度上可以提升感知范围,进一步解决L4级自动驾驶固有的长尾问题。

在成本层面,目前比较高级别的自动驾驶,高速巡航带动上下匝道包括城市巡航,其实都带激光。再加上控制器成本,整体成本基本上在3万左右。通过车路协同设施,能够减少车端传感器的成本和算力要求。继而实现整体解决方案上的成本压缩。

由此可见,无论是技术还是成本上,似乎车路云协同更有优势。值得注意的是,随着智慧城市的不断推进、发展,车路云协同,正在慢慢成为现实。

“未来的终局一定是智慧城市的缩影下的控制,不可能是单车智能。”某业内人士对产业家说。

值得注意的是,车路协同这条路上,所需要面临的问题其实更为严峻?

二、车路协同是出路吗?

车路协同,即在车辆智能化之外,再在道路两侧安装传感器及其他数据处理设备,实现车与车、车与路、车与人的信息实时交互,系统收集数据信息,主动参与和控制道路安全管理,充分有效地实现人、车、路的三方协同。

由于数据收集更加广泛,道路及其他信息涵盖得更加全面,因此车路协同在提升车辆及道路安全方面是单车智能的有效补充。

百度创始人李彦宏此前就曾谈到,安全,遭遇极端天气、物体遮挡等情况,单车智能容易看不见。而车路协同可以帮助车辆感知视野盲区的信息。通过车路协同可以让自动驾驶事故率降低99%。

其次是成本,“低速场景做L4可能一套下来都得三四十万,四五十万。”黄文欢对产业家说。

而在高速场景的L4级自动驾驶汽车,要保证系统的安全可靠,在感知、算力上的投入大幅度增长,那么随之而来的就是硬件设备无止尽的升级或增加。例如用于远距离、大范围探测的L4/L5级别自动驾驶主雷达方面,价格昂贵,禾赛科技在2020 CES上发布的64线超广角激光雷达PandarQT零售价就高达4.999美元。

据了解,目前高速场景L4级自动驾驶汽车硬件成本100万左右,如果将部分自动驾驶功能转移到路端,例如将激光雷达部署在路侧,以此补齐单车智能短板、还可降低成本。如果每辆车能够节省1.98万元的成本,就可以在每公里的道路上投入100万元的智能化改造。

但在国内,目前车路协同建设,强依赖于当地政府的资金、推动。此外,对于大部分自动驾驶厂商而言,本身已经具备单车智能的技术能力,便没有必要再去依赖车路协同下的信息。

其次,目前来看,车路协同路径的大规模推进,仍缺乏一个好的组织架构,即如何让车路协同真正的发挥它主导的优势和它的安全可靠性,以至于让智能驾驶公司能够减少车身冗余的这部分的一个传感器的硬件,很好的去配合那个车路协同的强感知强依赖的状态。

更为重要的问题是,若出现安全隐患,谁负责?

此外,车辆驾驶过程中,发生问题之前,双方都感知到了,通过传感器感知到一个问题,到底是听谁的,由谁来决策。到目前为止,这些问题都没有一个具体的应对方案。

“车路协同和单车智能未来或许是一个相互融合的局面。”黄文欢对产业家说。一个事实是,车路协同路径想要实现完全大规模落地,仍有很长一段距离。

“我们是同时看好两个路线,但是仍要以单车智能为主,然后车路协同为辅。”在张放眼中,好的工程化能力、硬件的开发能力以及数据闭环能力,是智行者L4级自动驾驶落地的重要能力。

站在当下来看,车路协同仍是L4级自动驾驶技术落地的出口。正如张放所言:“车路系统起步相对慢一点,但是它的上限会更高一点。”

但是,车路协同和自动驾驶需要相互融合、互补,才能发挥更大的优势。

“车路协同这块可能只占到20%左右,它还是一个辅助感知辅助定位。”黄文欢认为,就目前而言,车路协同无法作为自动驾驶的决策手段。

在愈发看中性价比的自动驾驶市场中,自动驾驶厂商需要开启新的“副本”。

三、自动驾驶的终局:智慧城市

过去很长一段时间里,单车智能、车路协同两种L4技术落地,后者往往是诸多业内人士并不看好的一条路径。

但随着政府对智慧城市的持续投入、数字化的持续渗透,以及5G等通信技术的发展,一些变化也在发生。

从2018年开始,国家相继出台多项政策,统筹规划车路协同产业发展,加强顶层协同。

根据亿欧报告,2020年新基建政策出台后,车路协同便与智慧城市绑定,成为智慧交通的必备要素。2021年“双智城市”的试点政策更是进一步推动了车路协同的发展。数据预测显示,随着车路协同逐步走向规模化与市场化,2030年中国车路协同市场规模有望达到4960亿元。

目前百度等互联网厂商也开始发力车路协同。

具体来看,挚途科技已经在一汽大众工厂物流、内蒙古策克口岸等诸多低速场景中部署车路协同软硬件设施;百度与广州黄埔达成合作,落地车路协同城市公共数字底座和智慧交通AI引擎。此外百度Apollo还在首钢园滑雪场打造车路协同自动驾驶应用场景等;蘑菇车联先后在湖南衡阳、四川成都、北京通州等地,相继开展车路协同项目,累计项目金额高达几十亿。

未来,随着技术及模式的逐渐成熟,车路协同成本正在大幅降低。

一方面,以雷达为主的核心零部件成本随着技术发展逐渐降低;另一方面,路端基础设施建设经历“实验验证→运营实验→技术验证”等多个阶段逐渐形成成熟机制后,成本也会降低;此外,未来单位道路资源上承载的车辆会逐渐增多,分摊之下成本优势也会更加明显。

在路端基础设施方面,随着车路协同逐步走向规模化与市场化,路端成本将从现在的100余万元/km进一步降低。

在自动驾驶成本不断降低,长尾问题不断完善下,一个可以看到的预测是,未来或将不需要车辆大脑,只是按照统一的标准、统一的接口去匹配车辆上统一的硬件。

智慧城市的建设,或将成为其终局。

从“一步到位”到场景、技术降维。从拼落地路径,到拼雷达、算力,再到如今的性价比之争,自动驾驶似乎变得愈发“接地气”。这种变化,恰似一个赛道发展走向成熟、稳定的前兆。但自动驾驶赛道,也因此进入了“淘汰赛”。

自动驾驶想要破局,需要换一种“活法”。文章来源地址https://www.toymoban.com/news/detail-712925.html

到了这里,关于自动驾驶,从“宠儿”走进“淘汰赛”的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 自动驾驶技术:人工智能驾驶的未来

    自动驾驶技术是一种利用计算机视觉、机器学习、人工智能等技术,以实现汽车在无人干预的情况下自主行驶的技术。自动驾驶技术的发展将重塑汽车行业,为人类带来更安全、高效、舒适的交通体系。 自动驾驶技术的主要组成部分包括: 传感器系统:负责获取车辆周围的

    2024年02月20日
    浏览(84)
  • 自动驾驶软件和人工智能

    自动驾驶汽车的核心在于其软件系统,而其中的机器学习和深度学习技术是使车辆能够感知、理解、决策和行动的关键。本文将深入探讨这些技术在自动驾驶中的应用,包括感知、定位、路径规划以及道路标志和交通信号的识别。 机器学习和深度学习在自动驾驶中的应用是实

    2024年02月07日
    浏览(56)
  • 如何使用RPA自动化人工智能和自动驾驶汽车

    人工智能和自动驾驶汽车是当今科技领域的热门话题。在这篇文章中,我们将探讨如何使用RPA(Robotic Process Automation)自动化人工智能和自动驾驶汽车。 RPA是一种自动化软件技术,它可以自动完成人类工作,提高工作效率。在人工智能和自动驾驶汽车领域,RPA可以帮助我们自动

    2024年02月20日
    浏览(65)
  • 人工智能与自动驾驶:智能出行时代的未来之路

           首先,我们先来说下什么是人工智能, 人工智能 (Artificial Intelligence,简称AI)是一门研究如何使计算机系统能够模拟、仿真人类智能的技术和科学领域。它涉及构建智能代理,使其能够感知环境、理解和学习知识,以及通过推理、决策和问题解决等方式与环境进行

    2024年02月03日
    浏览(67)
  • 【AI赋能】人工智能在自动驾驶时代的应用

    引言 人工智能引领现代,智能AI赋能未来。 它在当今社会和科技领域中具有重要性。 本文将着重探讨人工智能对自动驾驶技术的深度赋能和应用场景等。 有时我们乘坐网约车的时候,能打到无人驾驶汽车,全程均为AI语音播报: 自动驾驶是指通过使用 各种传感器 、 计算机

    2024年02月17日
    浏览(61)
  • 深度学习之路:自动驾驶沙盘与人工智能专业的完美融合

    引言: 在数字化时代,深度学习如一颗耀眼的明星,将人工智能推向新的高峰。本文将深度剖析自动驾驶沙盘与人工智能专业的紧密结合,旨在揭示这一融合对于中职和高职类人工智能专业的学子们的巨大意义。通过以图像识别技术为入口,我们将探讨自动驾驶沙盘在培养学

    2024年02月04日
    浏览(65)
  • 【探索AI未来】自动驾驶时代下的人工智能技术与挑战

    自动驾驶时代是指人工智能和相关技术在汽车行业中广泛应用,使得 汽车能够在不需要人类干预的情况下自主进行驾驶操作 的车辆新时代。在自动驾驶时代,车辆配备了感知、决策和控制系统,利用传感器、摄像头、雷达、激光等设备来获取周围环境信息,并通过人工智能

    2024年02月11日
    浏览(69)
  • 【Python | 人工智能】一文讲清AI赋能自动驾驶的底层原理

    引言 人工智能引领现代,智能AI赋能未来。 它在当今社会和科技领域中具有重要性。 本文将着重探讨人工智能对自动驾驶技术的深度赋能和应用场景等。 有时我们乘坐网约车的时候,能打到无人驾驶汽车,全程均为AI语音播报: 自动驾驶是指通过使用 各种传感器 、 计算机

    2024年02月04日
    浏览(55)
  • 自动驾驶国家新一代人工智能开放创新平台产业化应用

    【摘要】:当前,全球新一轮科技革命和产业变革正孕育兴起,自动驾驶作为人工智能最重要的应用载体之一,对于加快交通强国、智能汽车强国建设,具有十分突出的战略意义。我国自动驾驶研发应用,面临技术、资金、应用等诸多挑战,为此,需要打造一套符合我国国情

    2024年02月14日
    浏览(63)
  • 【深入探讨人工智能】AI大模型在自动驾驶中的应用

    当今, AI大模型 是一个火热的。随着人工智能的迅猛发展,AI大模型在各个领域展现出了巨大的潜力和应用价值。在自动驾驶领域,AI大模型的应用驱动自动驾驶算法具备更强的泛化能力。 那么 AI大模型 为自动驾驶赋能了什么?它的未来发展前景又是怎样? 本文将以

    2024年02月08日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包