2023_Spark_实验十:RDD基础算子操作

这篇具有很好参考价值的文章主要介绍了2023_Spark_实验十:RDD基础算子操作。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Ø练习 1:

//通过并行化生成 rdd

val rdd1 = sc.parallelize(List(5, 6, 4, 7, 3, 8, 2, 9, 1, 10))

//对 rdd1 里的每一个元素乘 2 然后排序

val rdd2 = rdd1.map(_ * 2).sortBy(x => x, true)

//过滤出大于等于十的元素

val rdd3 = rdd2.filter(_ >= 10)

//将元素以数组的方式在客户端显示

rdd3.collect

Ø 练习 2:

val rdd1 = sc.parallelize(Array("a b c", "d e f", "h i j"))

//将 rdd1 里面的每一个元素先切分在压平

val rdd2 = rdd1.flatMap(_.split(' '))

rdd2.collect

Ø 练习 3:

val rdd1 = sc.parallelize(List(5, 6, 4, 3))

val rdd2 = sc.parallelize(List(1, 2, 3, 4))

//求并集

val rdd3 = rdd1.union(rdd2)

//求交集

val rdd4 = rdd1.intersection(rdd2)

//去重

rdd3.distinct.collect

rdd4.collect

Ø 练习 4:

val rdd1 = sc.parallelize(List(("tom", 1), ("jerry", 3), ("kitty", 2)))

val rdd2 = sc.parallelize(List(("jerry", 2), ("tom", 1), ("shuke", 2)))

//求 jion

val rdd3 = rdd1.join(rdd2)

rdd3.collect

//求并集

val rdd4 = rdd1 union rdd2

//按 key 进行分组

val rdd5=rdd4.groupByKey

rdd5.collect

Ø 练习 5:

val rdd1 = sc.parallelize(List(("tom", 1), ("tom", 2), ("jerry", 3), ("kitty", 2)))

val rdd2 = sc.parallelize(List(("jerry", 2), ("tom", 1), ("shuke", 2)))

//cogroup

val rdd3 = rdd1.cogroup(rdd2)

//注意 cogroup 与 groupByKey 的区别

groupByKey

groupByKey会将RDD[key,value]按照相同的key进行分组,形成RDD[key,iterable[value]]的形式,有点类似于sql中的groupby,例如类似于mysql中的group_contact

cogroup

groupByKey是对单个RDD的数据进行分组,还可以使用一个叫作cogroup()的函数对多个共享同一个键的RDD进行分组

例:RDD1.cogroup(RDD2)会将RDD1和RDD2按照相同的key进行分组,得到(key,RDD[key,Iterable[value1],Iterable[value2]])的形式

cogroup也可以多个进行分组

例:RDD1.cogroup(RDD2,RDD3,…RDDN),可以得到

(key,Iterable[value1],Iterable[value2],Iterable[value3],…,Iterable[valueN])

rdd3.collect

Ø 练习 6:

val rdd1 = sc.parallelize(List(1, 2, 3, 4, 5,6,7,8,9,10))

//reduce 聚合

val rdd2 = rdd1.reduce(_ + _)

//rdd2.collect

Ø 练习 7:文章来源地址https://www.toymoban.com/news/detail-713149.html

val rdd1 = sc.parallelize(List(("tom", 1), ("jerry", 3), ("kitty", 2), ("shuke", 1)))

val rdd2 = sc.parallelize(List(("jerry", 2), ("tom", 3), ("shuke", 2), ("kitty", 5)))

val rdd3 = rdd1.union(rdd2)

//按 key 进行聚合

val rdd4 = rdd3.reduceByKey(_ + _)

rdd4.collect

//按 value 的降序排序

val rdd5 = rdd4.map(t => (t._2, t._1)).sortByKey(false).map(t => (t._2, t._1))

rdd5.collect

到了这里,关于2023_Spark_实验十:RDD基础算子操作的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Spark】RDD转换算子

    目录 map mapPartitions mapPartitionsWithIndex flatMap glom groupBy shuffle filter sample distinct coalesce repartition sortBy ByKey intersection union subtract zip partitionBy reduceByKey groupByKey reduceByKey 和 groupByKey 的区别 aggregateByKey foldByKey combineByKey reduceByKey、foldByKey、aggregateByKey、combineByKey 的区别 join leftOuterJoin

    2024年02月12日
    浏览(77)
  • Spark---RDD算子(单值类型转换算子)

    RDD算子是用于对RDD进行转换(Transformation)或行动(Action)操作的方法或函数。通俗来讲,RDD算子就是RDD中的函数或者方法,根据其功能,RDD算子可以分为两大类: 转换算子(Transformation): 转换算子用于从一个RDD生成一个新的RDD,但是原始RDD保持不变。常见的转换算子包括

    2024年01月21日
    浏览(50)
  • Spark中Rdd算子和Action算子--学习笔记

    filter distinct groupBy groupByKey,sortBy,SortByKey rdd之间的连接 collect,take,count()类的聚合算子,saveAsTextFile, 统计算子,countByKey() countByKey().items() countByValue() , countByValue().items() 词频统计 缓存是将数据存储再内存或者磁盘上,缓存的特点是计算结束后缓存自动清空 为什么使用缓存? 提升

    2024年01月16日
    浏览(62)
  • 2023_Spark_实验七:Scala函数式编程部分演示

    1、Scala中的函数 在Scala中,函数是“头等公民”,就和数字一样。可以在变量中存放函数,即:将函数作为变量的值(值函数)。 2、匿名函数 3、带函数参数的函数,即:高阶函数 示例1: (*)首先,定义一个最普通的函数 (*)再定义一个高阶函数 (*)分析这个高阶函数

    2024年02月08日
    浏览(61)
  • 2023_Spark_实验九:Scala函数式编程部分演示

    需求: 1、做某个文件的词频统计//某个单词在这个文件出现次数 步骤: 1、文件单词规律(空格分开) 2、单词切分 3、单词的统计 (k,v)-(k:单词,V:数量) 4、打印 框架: 1、单例对象,main() 2、创建CONF 3、创建SC--读取文件的方式--》RDD 4、RDD进行处理 5、关闭资源 一、新

    2024年02月08日
    浏览(48)
  • 2023_Spark_实验三:基于IDEA开发Scala例子

    一、创建一个空项目,作为整个项目的基本框架 二、创建SparkStudy模块,用于学习基本的Spark基础 三、创建项目结构 1、在SparkStudy模块下的pom.xml文件中加入对应的依赖,并等待依赖包下载完毕。 在pom.xml文件中加入对应的依赖 等待依赖包下载完毕 2、若不能自动下载依赖包,

    2024年02月10日
    浏览(37)
  • Spark中RDD的Transformation算子

    map算子的功能为做映射,即将原来的RDD中对应的每一个元素,应用外部传入的函数进行运算,返回一个新的RDD flatMap算子的功能为扁平化映射,即将原来RDD中对应的每一个元素应用外部的运算逻辑进行运算,然后再将返回的数据进行压平,类似先map,然后再flatten的操作,最后

    2024年02月11日
    浏览(40)
  • 【Spark编程基础】实验三RDD 编程初级实践(附源代码)

    1、熟悉 Spark 的 RDD 基本操作及键值对操作; 2、熟悉使用 RDD 编程解决实际具体问题的方法 1、Scala 版本为 2.11.8。 2、操作系统:linux(推荐使用Ubuntu16.04)。 3、Jdk版本:1.7或以上版本。 请到本教程官网的“下载专区”的“数据集”中下载 chapter5-data1.txt,该数据集包含了某大

    2024年03月25日
    浏览(57)
  • Spark源码解析(一):RDD之Transfrom算子

    RDD 代表的是分布式数据形态,因此,RDD 到 RDD 之间的转换,本质上是数据形态上的转换(Transformations) 在 RDD 的编程模型中,一共有两种算子,Transformations 类算子和 Actions 类算子。开发者需要使用 Transformations 类算子,定义并描述数据形态的转换过程,然后调用 Actions 类算子

    2024年01月20日
    浏览(44)
  • 2023_Spark_实验六:Scala面向对象部分演示(二)(IDEA开发)

    7、Scala中的apply方法() 遇到如下形式的表达式时,apply方法就会被调用: Object(参数1,参数2,......,参数N) 通常,这样一个apply方法返回的是伴生类的对象;其作用是为了省略new Object的apply方法举例: 8、Scala中的继承 Scala和Java一样,使用extends扩展类。 案例一:

    2024年02月10日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包