377. 组合总和 Ⅳ 70.魔改爬楼梯

这篇具有很好参考价值的文章主要介绍了377. 组合总和 Ⅳ 70.魔改爬楼梯。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

377. 组合总和 Ⅳ

题目:

给一个正整数数组和一个正整数目标值,数组的每个元素可取无限次,求总额达到目标值的最大排列数。

 dp[j]含义:

dp[j]:达到目标值j的整数组合数为dp[j]

递推公式:

求装满背包有几种方法(组合,排列数)用:dp[j] += dp[j - nums[i]];

初始化:

dp[0]=1

遍历顺序:

先物品后背包:最大组合数

先背包后物品:最大排列数

总代码:

class Solution {
public:
    int combinationSum4(vector<int>& nums, int target) {
        vector<int> dp(target + 1, 0);
        dp[0] = 1;
        for (int i = 0; i <= target; i++) { // 遍历背包
            for (int j = 0; j < nums.size(); j++) { // 遍历物品
//C++测试用例有两个数相加超过力扣int的数据,所以需要在if里加上dp[i] < INT_MAX - dp[i - num]。
                if (i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]]) {
                    dp[i] += dp[i - nums[j]];
                }
            }
        }
        return dp[target];
    }
};

 

70.魔改爬楼梯

题目:代码随想录

一步一个台阶,两个台阶,三个台阶,.......,直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢?

思路:

相当于:给了一个1-m的数组,数组元素可取无数次,到达总数为m的最大排列数。

dp[j]含义

dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法。

递推公式:

求装满背包(爬到目标楼梯)有几种方法(组合,排列数)用:dp[j] += dp[j - nums[i]];

nums[i]一般指当前为 i 的物品,这题num[i]有1----m,但没有数组的形式,所以dp[j]+=dp[j-i]

初始化:

dp[0]=1

遍历顺序:

先物品后背包:最大组合数

先背包后物品:最大排列数

求排列数,所以先背包后物体

总代码:

class Solution {
public:
    int climbStairs(int n) {
        vector<int> dp(n + 1, 0);
        dp[0] = 1;
        for (int i = 1; i <= n; i++) { // 遍历背包
            for (int j = 1; j <= m; j++) { // 遍历物品
                if (i - j >= 0) dp[i] += dp[i - j];
            }
        }
        return dp[n];
    }
};

 文章来源地址https://www.toymoban.com/news/detail-713201.html

到了这里,关于377. 组合总和 Ⅳ 70.魔改爬楼梯的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包