线性代数|证明:矩阵特征值之和等于主对角线元素之和

这篇具有很好参考价值的文章主要介绍了线性代数|证明:矩阵特征值之和等于主对角线元素之和。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

性质 1 设 n n n 阶矩阵 A = ( a i j ) \boldsymbol{A} = (a_{ij}) A=(aij) 的特征值为 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn,则 λ 1 + λ 2 + ⋯ + λ n = a 11 + a 22 + ⋯ + a n n \lambda_1 + \lambda_2 + \cdots + \lambda_n = a_{11} + a_{22} + \cdots + a_{nn} λ1+λ2++λn=a11+a22++ann

证明 不妨设矩阵 A \boldsymbol{A} A 的特征多项式为
f ( λ ) = ∣ A − λ E ∣ = ∣ a 11 − λ a 12 ⋯ a 1 n a 21 a 22 − λ ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n − λ ∣ = k 0 + k 1 λ + ⋯ k n λ n (1) f(\lambda) = |\boldsymbol{A} - \lambda \boldsymbol{E}| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \\ \end{vmatrix} = k_0 + k_1 \lambda + \cdots k_n \lambda^n \tag{1} f(λ)=AλE= a11λa21an1a12a22λan2a1na2nannλ =k0+k1λ+knλn(1)
因为矩阵 A \boldsymbol{A} A 的特征值 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn 是特征方程 f ( λ ) = 0 f(\lambda) = 0 f(λ)=0 n n n 个解,所以上式 ( 1 ) (1) (1) 可以写成
f ( λ ) = ( λ 1 − λ ) ( λ 2 − λ ) ⋯ ( λ n − λ ) (2) f(\lambda) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda) \tag{2} f(λ)=(λ1λ)(λ2λ)(λnλ)(2)
根据韦达定理可知,上式 ( 2 ) (2) (2) λ n − 1 \lambda^{n-1} λn1 的系数 k n − 1 = λ 1 + λ 2 + ⋯ + λ n k_{n-1} = \lambda_1 + \lambda_2 + \cdots + \lambda_n kn1=λ1+λ2++λn

因为在行列式 ∣ A − λ E ∣ |\boldsymbol{A} - \lambda \boldsymbol{E}| AλE 中,除主对角线对应的项以外,其他项展开后关于 λ \lambda λ 的最高项均小于等于 n − 2 n-2 n2 次;所以,若要得到 λ n − 1 \lambda^{n-1} λn1 项,只能通过主对角线对应的项得到。主对角线对应的项为
( a 11 − λ ) ( a 22 − λ ) ⋯ ( a n n − λ ) (3) (a_{11} - \lambda) (a_{22} - \lambda) \cdots (a_{nn} - \lambda) \tag{3} (a11λ)(a22λ)(annλ)(3)
因为上式 ( 3 ) (3) (3) λ n − 1 \lambda^{n-1} λn1 的系数即式 ( 1 ) (1) (1) λ n − 1 \lambda^{n-1} λn1 的系数 k n − 1 k_{n-1} kn1,根据韦达定理,有 k n − 1 = a 11 + a 22 + ⋯ + a n n k_{n-1} = a_{11} + a_{22} + \cdots + a_{nn} kn1=a11+a22++ann

综上所述,有
λ 1 + λ 2 + ⋯ + λ n = k n − 1 = a 11 + a 22 + ⋯ + a n n \lambda_1 + \lambda_2 + \cdots + \lambda_n = k_{n-1} = a_{11} + a_{22} + \cdots + a_{nn} λ1+λ2++λn=kn1=a11+a22++ann
得证。文章来源地址https://www.toymoban.com/news/detail-713257.html

到了这里,关于线性代数|证明:矩阵特征值之和等于主对角线元素之和的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 线性代数(8):特征值、特征向量和相似矩阵

            有矩阵 A 为 n 阶矩阵,Ax = λx ( λ 为一个实数,x为 n 维非零列向量 ),则称 λ 为方阵 A 的特征值, x 为特征向量; 1.2.1 公式         求特征值:使 | A - λE | = 0,其解的 λ 值即为矩阵 A 的特征值;         求特征向量: 使 ( A - λE )x = 0,设 x 为与 A 具有

    2024年02月11日
    浏览(50)
  • 线性代数(五) | 矩阵对角化 特征值 特征向量

    矩阵实际上是一种变换,是一种旋转伸缩变换(方阵) 不是方阵的话还有可能是一种升维和降维的变换 直观理解可以看系列超赞视频线性代数-哔哩哔哩_Bilibili 比如A= ( 1 2 2 1 ) begin{pmatrix}12\\\\21end{pmatrix} ( 1 2 ​ 2 1 ​ ) x= ( 1 2 ) begin{pmatrix}1\\\\2end{pmatrix} ( 1 2 ​ ) 我们给x左乘A实际

    2024年02月04日
    浏览(63)
  • 线性代数中矩阵的特征值与特征向量

    作者:禅与计算机程序设计艺术 在线性代数中,如果一个$ntimes n$的方阵$A$满足如下两个条件之一: $A$存在实数特征值,即$exists xneq 0:Ax=kx$,其中$kin mathbb{R}$; $lambda_{max}(A)neq 0$($lambda_{max}(A)$表示$A$的最大特征值),且$||x_{lambda_{max}(A)}||=sqrt{frac{lambda_{max}(A)}{lambda_{

    2024年02月08日
    浏览(51)
  • 【线性代数】矩阵特征值的快速求法

    本文讨论 3阶矩阵 的特征值的快速求法。 分为速写特征多项式和速解方程两部分。 速写特征多项式 不妨令: A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] boldsymbol{A}=left[begin{array}{lll} a_{11} a_{12} a_{13} \\\\ a_{21} a_{22} a_{23} \\\\ a_{31} a_{32} a_{33} end{array}right] A = ​ a 11 ​ a 21 ​ a 31 ​

    2024年02月03日
    浏览(43)
  • 线性代数的学习和整理19,特征值,特征向量,以及引入的正交化矩阵概念

    目录 1 什么是特征值和特征向量? 1.1 特征值和特征向量这2个概念先放后 1.2 直观定义 1.3 严格定义 2 如何求特征值和特征向量 2.1 方法1:结合图形看,直观方法求 2.1.1 单位矩阵的特征值和特征向量 2.1.2 旋转矩阵 2.2  根据严格定义的公式 A*X=λ*X 来求 2.3  特征方程 2.4 互异特

    2024年02月09日
    浏览(66)
  • 线性代数——特征值和特征向量

    学习高等数学和线性代数需要的初等数学知识 线性代数——行列式 线性代数——矩阵 线性代数——向量 线性代数——线性方程组 线性代数——特征值和特征向量 线性代数——二次型 本文大部分内容皆来自李永乐老师考研教材和视频课。 设 A = [ a i j ] A=[a_{ij}] A = [ a ij ​

    2024年02月15日
    浏览(44)
  • 线性代数 --- 特征值与特征向量

    Part I:特征值,特征向量的意义与性质         已知任意向量x,现有矩阵A对x进行操作后,得到新的向量Ax。这就好比是自变量x与函数f(x)的关系一样,向量x通过类似“函数”的处理得到了一个新的向量Ax。这个新的向量可能和原向量x方向相同,也可能不同(事实上大多都不同

    2024年03月10日
    浏览(49)
  • 线性代数基础 | 特征值和特征向量

    一、特征值和特征向量的定义 A. 特征值的定义和性质 特征值(eigenvalue)是线性代数中一个重要的概念,用于描述线性变换对于某个向量的伸缩效应。在本文中,我们将深入讨论特征值的定义和性质。 首先,我们考虑一个线性变换(或者说一个方阵)A。对于一个非零向量v,

    2024年02月16日
    浏览(41)
  • 线性代数 --- 特征值与特征向量(下)

    Eigen Values Eigen Vectors Part III:如何求解特征向量与特征值 对于一般矩阵A,如何找到他的特征值与特征向量? Step I: Find λ first! 首先,我们有方程: 但这里有两个未知数,因此我们把上面的方程改写一下:         这个齐次方程的解就是矩阵(A-I)的零空间,抛开平凡解全0向

    2024年03月14日
    浏览(48)
  • 线性代数学习之特征值与特征向量

    在上一次线性代数学习之行列式学习了行列式相关的一些概念,其中也多次提到学好行列式是为了学习“特征值和特征向量”的基础,所以此次就正式进入这块内容的学习,也是线性代数中非常重要的概念,因为它又是线性代数其它重要概念的基石比如矩阵的相似性等等,当

    2024年02月11日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包