【深度学习】Transformer、GPT、BERT、Seq2Seq什么区别?

这篇具有很好参考价值的文章主要介绍了【深度学习】Transformer、GPT、BERT、Seq2Seq什么区别?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

请看vcr:https://transformers.run/back/transformer/
【深度学习】Transformer、GPT、BERT、Seq2Seq什么区别?,深度学习机器学习,深度学习文章来源地址https://www.toymoban.com/news/detail-713269.html

到了这里,关于【深度学习】Transformer、GPT、BERT、Seq2Seq什么区别?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【深度学习-注意力机制attention 在seq2seq中应用】

    这是一个普通的seq2seq结构,用以实现机器对话,Encoder需要把一个输入的一个句子转化为一个最终的输出,上下文context vector,然后在Decoder中使用,但这里有些问题: 如果句子很长,这个向量很难包含sequence中最早输入的哪些词的信息,那么decoder的处理必然也缺失了这一部分

    2024年02月09日
    浏览(47)
  • 深度学习笔记之Seq2seq(三)注意力机制的执行过程

    上一节介绍了 Seq2seq text{Seq2seq} Seq2seq 中注意力机制 ( Attention ) (text{Attention}) ( Attention ) 的动机,并介绍了 权重系数、 Score text{Score} Score 函数 。本节将完整介绍 注意力机制 在 Seq2seq text{Seq2seq} Seq2seq 中的执行过程。 经典 Seq2seq text{Seq2seq} Seq2seq 模型中 Context text{Context} Co

    2024年02月08日
    浏览(52)
  • 从零实现深度学习框架——带Attentiond的Seq2seq机器翻译

    本着“ 凡我不能创造的,我就不能理解 ”的思想,本系列文章会基于纯Python以及NumPy从零创建自己的深度学习框架,该框架类似PyTorch能实现自动求导。 要深入理解深度学习,从零开始创建的经验非常重要,从自己可以理解的角度出发,尽量不使用外部完备的框架前提下,实

    2024年02月15日
    浏览(96)
  • 机器学习&&深度学习——从编码器-解码器架构到seq2seq(机器翻译)

    👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习深度学习——注意力提示、注意力池化(核回归) 📚订阅专栏:机器学习深度学习 希望文章对你们有所帮助 接下来就要慢慢开始实战了,把这边过了,我们接下来就要进行机器翻译的实战

    2024年02月13日
    浏览(43)
  • 基于transformer的Seq2Seq机器翻译模型训练、预测教程

    机器翻译(Machine Translation, MT)是一类将某种语言(源语言,source language)的句子 x x x 翻译成另一种语言(目标语言,target language)的句子 y y y 的任务。机器翻译的相关研究早在上世纪50年代美苏冷战时期就开始了,当时的机器翻译系统是基于规则的,利用两种语言的单词、

    2024年02月03日
    浏览(40)
  • 李宏毅-hw5-translation-有关transformer、seq2seq的探索

    一、ppt研读: 1.关于这个 input Embedding 的内容: 2.关于Positional Encoding: 二、慢慢积累,一点点阅读代码: 虽然这次的模块挺多的,但是,这样也就意味着,把这个内化为自己的,就可以获得更大的进步了 1.关于使用git命令获取到源代码: 2.Fix Random Seed部分都是相同的,就是为

    2024年02月09日
    浏览(40)
  • 构建seq2seq模型的常见问题

    1. seq2seq模型,输入是一个词向量,而不是词向量列表,对吧? 是的,对于seq2seq模型,输入和输出都需要被转换成词向量形式。 对于输入来说,通常会将一个句子转换成一个词向量序列。具体地,对于每个单词或者字符,都会将其对应成一个词向量,然后将所有词向量按照它

    2024年02月06日
    浏览(38)
  • 【文本摘要(2)】pytorch之Seq2Seq

    改废了两个代码后,又找到了一个文本摘要代码 终于跑起来了 改废的两个代码: 一个是机器翻译改文本摘要,结果没跑起来。。。 一个是英文文本摘要改中文文本摘要,预测的摘要全是,,,这种 代码参考: https://github.com/jasoncao11/nlp-notebook/tree/master/4-2.Seq2seq_Att 跪谢大佬

    2024年02月03日
    浏览(45)
  • Seq2Seq在安全领域的应用实践

    非常感谢您委托我撰写这篇专业的技术博客文章。作为一位世界级人工智能专家、程序员、软件架构师,我会遵循您提供的目标和约束条件,以专业的技术语言,结合深入的研究和准确的信息,为您呈现一篇内容丰富、结构清晰、实用价值高的技术博客文章。 下面我将开始正文的

    2024年04月28日
    浏览(35)
  • 自然语言处理: 第四章Seq2Seq

    开始之前,首先提出一个问题,电脑是怎么识别人类的命令的,首先人们通过输入代码(编码) ,带入输入给计算机然后再经过处理(解码)得到最终的命令。所以可以看到这其实是一个编码 + 解码的过程。可以看到首先我们将初始的信息通过编码,得到涵盖全局的信息的特征然

    2024年02月12日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包