【深入探讨人工智能】AI大模型在自动驾驶中的应用

这篇具有很好参考价值的文章主要介绍了【深入探讨人工智能】AI大模型在自动驾驶中的应用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【深入探讨人工智能】AI大模型在自动驾驶中的应用,人工智能之门,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习

1️⃣文章引言

当今,AI大模型是一个火热的关键词。随着人工智能的迅猛发展,AI大模型在各个领域展现出了巨大的潜力和应用价值。在自动驾驶领域,AI大模型的应用驱动自动驾驶算法具备更强的泛化能力。

那么 AI大模型 为自动驾驶赋能了什么?它的未来发展前景又是怎样?

本文将以主流自动驾驶汽车特斯拉为例,揭开AI大模型在自动驾驶领域的神秘面纱


AI大模型在自动驾驶中的应用涵盖了深度神经网络、卷积神经网络、循环神经网络、BEV+Transformer特征级融合以及语义分割等方面。通过这些应用,AI大模型能够提供强大的感知和理解能力,为自动驾驶系统的性能和安全性提供关键支持。

2️⃣视觉感知优化汽车之眼

在自动驾驶中,视觉感知是非常重要的一项技术,AI大模型在视觉感知上也有着广泛的应用。

AI大模型可以通过目标检测和跟踪技术,实现对道路上的车辆、行人等目标的准确识别和追踪。这种技术能够帮助自动驾驶系统建立对周围环境的感知,并为决策和规划提供必要的信息。

【深入探讨人工智能】AI大模型在自动驾驶中的应用,人工智能之门,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习

常见的目标检测算法包括基于传统方法的Haar特征级联分类器、HOG+SVM以及基于深度学习的Faster R-CNN和YOLO等。这些算法通常通过在图像上滑动窗口,并使用分类器来判断窗口内是否存在目标,进而完成目标的定位与识别。

【深入探讨人工智能】AI大模型在自动驾驶中的应用,人工智能之门,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习

光流估计是通过分析连续帧图像中像素的位移来推断运动信息的技术。

AI大模型可以利用光流估计来检测道路上的动态物体,并进行动态障碍物的预测和跟踪。这对于自动驾驶系统的安全性和稳定性至关重要。

【深入探讨人工智能】AI大模型在自动驾驶中的应用,人工智能之门,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习

光流估计基于亮度恒定和空间连续假设,将相邻图像中同一点的灰度变化关系转化为速度向量场,其中点的运动轨迹是连续、等间距的。通过对图像中的特征点进行跟踪,可以得到这些特征点的速度向量,从而推断出物体在图像中的运动情况。

以下是光流估计的简单代码:

import cv2
cap = cv2.VideoCapture(0)
# 设置参数
feature_params = dict(maxCorners=100, qualityLevel=0.3, minDistance=7, blockSize=7)
lk_params = dict(winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# 初始化点的位置
old_points = None
while True:
    ret, frame = cap.read()
    # 灰度处理
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    # 检测特征点
    if old_points is None:
        old_points = cv2.goodFeaturesToTrack(gray, mask=None, **feature_params)
    else:
        # 计算光流
        new_points, status, error = cv2.calcOpticalFlowPyrLK(old_gray, gray, old_points, None, **lk_params)
        # 选取好的新特征点
        good_new = new_points[status == 1]
        # 选取对应的旧特征点
        good_old = old_points[status == 1]
        # 绘制跟踪结果
        for i, (new, old) in enumerate(zip(good_new, good_old)):
            a, b = new.ravel()
            c, d = old.ravel()
            mask = cv2.line(mask, (a, b), (c, d), color[i].tolist(), 2)
            frame = cv2.circle(frame, (a, b), 5, color[i].tolist(), -1)
        img = cv2.add(frame, mask)
        old_gray = gray.copy()  # 更新旧特征点
        old_points = good_new.reshape(-1, 1, 2)  # 更新旧特征点
    cv2.imshow('frame', img)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

AI大模型在目标检测与跟踪、路面分割与地面估计、光流估计与动态物体检测等方面的应用,能够提供强大的视觉感知能力,为自动驾驶系统的安全性和性能提供重要支持。


3️⃣神经网络赋能感知算法

神经网络是自动驾驶中的重要组成部分,用于感知、决策和控制,提供智能化的数据处理和驾驶决策能力。

在自动驾驶中,我们主要运用到了深度神经网络DNN、卷积神经网络CNN、循环神经网络RNN三种神经网络。

深度神经网络DNN

深度神经网络是一种由多个神经网络层级组成的模型,每一层都会对输入数据进行一系列的非线性转换和特征提取。通过增加网络的深度,深度神经网络可以学习到更复杂、抽象的特征表示,从而提高模型的表达能力和性能。

【深入探讨人工智能】AI大模型在自动驾驶中的应用,人工智能之门,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习
在自动驾驶中,深度神经网络常用于图像识别、目标检测、语义分割等感知任务,以及决策和规划等高级驾驶任务。

卷积神经网络CNN

卷积神经网络通过卷积层池化层的组合,可以从图像中提取特征,并自动学习这些特征的表示。卷积操作可以在输入图像上滑动一个小的窗口,将窗口内的局部信息与卷积核进行卷积运算,以提取不同位置的特征。而池化层则可以对特征图进行下采样,保留最重要的特征信息。通过堆叠多个卷积层和池化层,CNN可以逐渐提取出更高级别的特征,从而实现对图像的分类、检测和分割等任务。

【深入探讨人工智能】AI大模型在自动驾驶中的应用,人工智能之门,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习

在自动驾驶中,CNN被广泛应用于实现车辆的视觉感知,如道路边界识别障碍物检测交通标志识别等。

【深入探讨人工智能】AI大模型在自动驾驶中的应用,人工智能之门,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习

循环神经网络RNN

循环神经网络是一种用于处理序列数据的神经网络。与传统的前馈神经网络不同,RNN具有循环连接,使得它可以保持记忆并处理变长的序列输入。

举个例子:

假设我们有一段文本:“The cat sat on the mat”,现在需要将其进行自动翻译为中文。我们可以使用循环神经网络来完成这个任务。

首先,我们定义一个包含若干隐藏层的循环神经网络,并将整个英文传入网络中。在每个时间步长上,网络会从前一个时间步长中的隐藏状态和当前时间步长的输入中计算出当前时间步长对应的隐藏状态,并将其传递到下一个时间步长。在整个文本输入完成后,我们从最后一个隐藏状态中提取出该文本的语义表示

接着,我们可以将这个语义表示作为输入,连同一个全连接层一起,构成一个解码器。在解码器中,我们在每个时间步长上都输出一个汉字。为了让模型学习到如何正确翻译句子,我们将整个中文文本作为目标输出,并以其与解码器的输出之间的差异作为损失函数,使用反向传播算法对整个模型进行训练。经过数代迭代,循环神经网络将逐渐学会将英文文本翻译成中文

图示如下:

输入层               隐藏层                   输出层
--------        -----------        --------
|  w   | ------->|   neuron  |------->|   x   |
|  o   |         |    (h)    |        |   n   |
|  r   | <-------|            |<-------|   .
|  d   | ------->|            |------->|   .
--------        ------------       --------

循环神经网络在自然语言处理、语音识别、时间序列预测等任务中广泛应用。RNN能够捕捉到序列中的动态模式,并对未来的内容进行预测或生成。


4️⃣BEV+Transformer创新特征级融合

特征级融合指的是将不同来源或不同类型的特征进行整合,以提升模型性能和表征能力。

BEV是一种俯视图,可以提供关于场景的全局信息和准确的空间定位。BEV以图像的形式展示了车辆周围的环境,每个像素代表一种属性(例如障碍物、道路线等)。

【深入探讨人工智能】AI大模型在自动驾驶中的应用,人工智能之门,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习

而Transformer是一种基于自注意力机制的序列建模方法,它通过多头自注意力机制和前馈神经网络构建,可以同时考虑序列中的长距离依赖关系,并且在处理任意长度的序列时具有可扩展性。

【深入探讨人工智能】AI大模型在自动驾驶中的应用,人工智能之门,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习

使用Transformer网络来处理BEV图像中的特征,并将其编码为高维特征表示。然后,这些特征可以与其他传感器(如相机图像)提取的特征进行融合,形成一个更加综合且全面的特征表示。

简单来说, 使用融合后的特征表示作为输入,目标检测算法会根据综合特征来预测物体的位置、类别和其他属性。

这样的融合可以帮助模型更好地理解和处理复杂的场景,并提升任务的性能,例如目标检测、目标跟踪和行为预测等。


5️⃣语义分割深化场景理解

语义分割是计算机视觉领域的一个任务,旨在将图像中的每个像素标记为对应的语义类别,从而实现对图像的像素级别理解。

【深入探讨人工智能】AI大模型在自动驾驶中的应用,人工智能之门,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习

语义分割能够将图像中的每个像素进行分类,包括物体、背景和其他区域

同时,语义分割也可以区分出图像中不同的物体实例,并给它们分配独立的类别标签,例如目标的姿态、形状和尺寸等特征。

【深入探讨人工智能】AI大模型在自动驾驶中的应用,人工智能之门,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习

这提供了更详细和准确的场景信息,也为各种计算机视觉任务和应用提供了更强大的支持和基础。


总结

AI大模型的发展和成熟为自动驾驶技术带来了巨大的推动力。

未来,自动驾驶将成为安全、高效和舒适出行的代名词,同时对交通方式和城市规划产生深远的影响,为我们创造更美好的出行体验。

【深入探讨人工智能】AI大模型在自动驾驶中的应用,人工智能之门,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习文章来源地址https://www.toymoban.com/news/detail-713307.html

到了这里,关于【深入探讨人工智能】AI大模型在自动驾驶中的应用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【深入探索AI原生应用】文心大模型4.0开启人工智能之门

    10月17日,以“生成未来(PROMPT THE WORLD)”为主题的Baidu World 2023在北京首钢园举办。 李彦宏在百度世界2023上表示: “ 大模型带来的智能涌现,这是我们开发AI原生应用的基础。” 。当天,李彦宏以 《手把手教你做AI原生应用》 为主题发表演讲,发布 文心大模型4.0版本 ,并

    2024年02月08日
    浏览(60)
  • 自动驾驶技术:人工智能驾驶的未来

    自动驾驶技术是一种利用计算机视觉、机器学习、人工智能等技术,以实现汽车在无人干预的情况下自主行驶的技术。自动驾驶技术的发展将重塑汽车行业,为人类带来更安全、高效、舒适的交通体系。 自动驾驶技术的主要组成部分包括: 传感器系统:负责获取车辆周围的

    2024年02月20日
    浏览(87)
  • 走进人工智能|自动驾驶 迈向无人驾驶未来

    前言: 自动驾驶是一种技术,通过使用传感器、人工智能和算法来使车辆能够在不需要人类干预的情况下自主地感知、决策和操作。 本篇带你走进自动化驾驶!一起来学习了解吧!!! 随着科技的不断进步,自动驾驶已经成为当今社会最炙手可热的话题之一。它引领着我们

    2024年02月11日
    浏览(61)
  • 自动驾驶软件和人工智能

    自动驾驶汽车的核心在于其软件系统,而其中的机器学习和深度学习技术是使车辆能够感知、理解、决策和行动的关键。本文将深入探讨这些技术在自动驾驶中的应用,包括感知、定位、路径规划以及道路标志和交通信号的识别。 机器学习和深度学习在自动驾驶中的应用是实

    2024年02月07日
    浏览(61)
  • 人工智能与自动驾驶:智能出行时代的未来之路

           首先,我们先来说下什么是人工智能, 人工智能 (Artificial Intelligence,简称AI)是一门研究如何使计算机系统能够模拟、仿真人类智能的技术和科学领域。它涉及构建智能代理,使其能够感知环境、理解和学习知识,以及通过推理、决策和问题解决等方式与环境进行

    2024年02月03日
    浏览(72)
  • 走进人工智能|自动驾驶 开启智能出行新时代

    自动驾驶,也被称为无人驾驶或自动驾驶汽车,是指能够在没有人类干预的情况下自主地感知环境、决策和控制车辆行驶的技术和系统。 自动驾驶汽车是一种通过电脑系统实现无人驾驶的智能汽车。这种车辆依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作

    2024年02月14日
    浏览(52)
  • 如何使用RPA自动化人工智能和自动驾驶汽车

    人工智能和自动驾驶汽车是当今科技领域的热门话题。在这篇文章中,我们将探讨如何使用RPA(Robotic Process Automation)自动化人工智能和自动驾驶汽车。 RPA是一种自动化软件技术,它可以自动完成人类工作,提高工作效率。在人工智能和自动驾驶汽车领域,RPA可以帮助我们自动

    2024年02月20日
    浏览(73)
  • 深度学习之路:自动驾驶沙盘与人工智能专业的完美融合

    引言: 在数字化时代,深度学习如一颗耀眼的明星,将人工智能推向新的高峰。本文将深度剖析自动驾驶沙盘与人工智能专业的紧密结合,旨在揭示这一融合对于中职和高职类人工智能专业的学子们的巨大意义。通过以图像识别技术为入口,我们将探讨自动驾驶沙盘在培养学

    2024年02月04日
    浏览(68)
  • 自动驾驶国家新一代人工智能开放创新平台产业化应用

    【摘要】:当前,全球新一轮科技革命和产业变革正孕育兴起,自动驾驶作为人工智能最重要的应用载体之一,对于加快交通强国、智能汽车强国建设,具有十分突出的战略意义。我国自动驾驶研发应用,面临技术、资金、应用等诸多挑战,为此,需要打造一套符合我国国情

    2024年02月14日
    浏览(68)
  • 【人工智能】之深入理解 AI Agent:超越代码的智能助手(2)

    人工智能(AI)正在以前所未有的速度迅猛发展,而AI Agent(智能代理)则是这一领域中备受瞩目的一环。 AI Agent 不仅仅是程序的执行者,更是能够感知、学习和交互的智能实体。本文将深入探讨什么是 AI Agent ,以及这一概念在当今科技领域中的重要性。 AI Agent 是指一种能够

    2024年01月19日
    浏览(63)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包