😎前言
二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。
查找过程:
首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
算法要求:
1.必须采用顺序存储结构。
2.必须按关键字大小有序排列。
比较次数:
计算公式:
当顺序表有n个关键字时:
查找失败时,至少比较a次关键字;
查找成功时,最多比较关键字次数是b。
注意:a,b,n均为正整数。
算法复杂度:
二分查找的基本思想是将n个元素分成大致相等的两部分,取a[n/2]与x做比较,如果x=a[n/2],则找到x,算法中止;如果x<a[n/2],则只要在数组a的左半部分继续搜索x,如果x>a[n/2],则只要在数组a的右半部搜索x.
时间复杂度即是while循环的次数。
总共有n个元素,
渐渐跟下去就是n,n/2,n/4,…n/2^k(接下来操作元素的剩余个数),其中k就是循环的次数
由于你n/2^k取整后>=1
即令n/2^k=1
可得k=log2n,(是以2为底,n的对数)
所以时间复杂度可以表示O(h)=O(log2n)
🌲山脉数组的峰顶索引
🚩题目描述:
符合下列属性的数组 arr 称为 山脉数组 :
arr.length >= 3
存在 i(0 < i < arr.length - 1)使得:
-
arr[0] < arr[1] < … arr[i-1] < arr[i]
-
arr[i] > arr[i+1] > … > arr[arr.length - 1]
给你由整数组成的山脉数组 arr ,返回满足 arr[0] < arr[1] < … arr[i - 1] < arr[i] > arr[i + 1] > … > arr[arr.length - 1] 的下标 i 。
你必须设计并实现时间复杂度为 O(log(n)) 的解决方案。
-
示例 1:
输入:arr = [0,1,0]
输出:1 -
示例 2:
输入:arr = [0,2,1,0]
输出:1 -
示例 3:
输入:arr = [0,10,5,2]
输出:1
class Solution {
public int peakIndexInMountainArray(int[] arr) {
}
}
🚩算法思路
1、分析峰顶位置的数据特点,以及⼭峰两旁的数据的特点:
-
峰顶数据特点: arr[i] > arr[i - 1] && arr[i] > arr[i + 1] ;
-
峰顶左边的数据特点: arr[i] > arr[i - 1] && arr[i] < arr[i + 1] ,也就是呈现上升趋势
-
峰顶右边数据的特点: arr[i] < arr[i - 1] && arr[i] > arr[i + 1] ,也就是呈现下降趋势
2.、因此,根据 mid 位置的信息,我们可以分为下⾯三种情况:
-
如果 mid 位置呈现上升趋势,说明我们接下来要在 [mid + 1, right] 区间继续搜索;
-
如果 mid 位置呈现下降趋势,说明我们接下来要在 [left, mid - 1] 区间搜索;
-
如果 mid 位置就是⼭峰,直接返回结果
🚩代码实现:
class Solution {
public int peakIndexInMountainArray(int[] arr) {
int left = 1;
int right = arr.length - 2;
while(left < right) {
int mid = left + (right - left + 1) / 2;
if(arr[mid] > arr[mid - 1]) {
left = mid;
} else {
right = mid - 1;
}
}
return left;
}
}
🌴寻找峰值
🚩题目描述
峰值元素是指其值严格大于左右相邻值的元素。
给你一个整数数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。
你可以假设 nums[-1] = nums[n] = -∞ 。
你必须实现时间复杂度为 O(log n) 的算法来解决此问题。
- 示例 1:
输入:nums = [1,2,3,1]
输出:2
解释:3 是峰值元素,你的函数应该返回其索引 2。 - 示例 2:
输入:nums = [1,2,1,3,5,6,4]
输出:1 或 5
解释:你的函数可以返回索引 1,其峰值元素为 2;或者返回索引 5, 其峰值元素为 6。
class Solution {
public int findPeakElement(int[] nums) {
}
}
🚩算法思路:
寻找⼆段性:
任取⼀个点 i ,与下⼀个点 i + 1 ,会有如下两种情况:
-
arr[i] > arr[i + 1] :此时「左侧区域」⼀定会存在⼭峰(因为最左侧是负⽆穷),那么我们可以去左侧去寻找结果;
-
arr[i] < arr[i + 1] :此时「右侧区域」⼀定会存在⼭峰(因为最右侧是负⽆穷),那么我们可以去右侧去寻找结果
当我们找到「⼆段性」的时候,就可以尝试⽤「⼆分查找」算法来解决问题
🚩代码实现
class Solution {
public int findPeakElement(int[] nums) {
int left = 0;
int right = nums.length - 1;
if(right < 1) {
return 0;
}
while(left < right) {
int cmd = (left + right + 1) / 2;
if(nums[cmd -1] <= nums[cmd] ) {
left = cmd;
} else {
right = cmd -1;
}
}
return left;
}
}
🍀寻找旋转排序数组中的最小值
🚩题目描述
已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:
- 若旋转 4 次,则可以得到 [4,5,6,7,0,1,2]
- 若旋转 7 次,则可以得到 [0,1,2,4,5,6,7]
注意,数组 [a[0], a[1], a[2], …, a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], …, a[n-2]] 。
给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。
你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。
-
示例 1:
输入:nums = [3,4,5,1,2]
输出:1
解释:原数组为 [1,2,3,4,5] ,旋转 3 次得到输入数组。 -
示例 2:
输入:nums = [4,5,6,7,0,1,2]
输出:0
解释:原数组为 [0,1,2,4,5,6,7] ,旋转 4 次得到输入数组。 -
示例 3:
输入:nums = [11,13,15,17]
输出:11
解释:原数组为 [11,13,15,17] ,旋转 4 次得到输入数组
class Solution {
public int findMin(int[] nums) {
}
}
🚩算法思路
题⽬中的数组规则如下图所⽰:
其中 C 点就是我们要求的点。
⼆分的本质:找到⼀个判断标准,使得查找区间能够⼀分为⼆。
通过图像我们可以发现, [A,B] 区间内的点都是严格⼤于 D 点的值的, C 点的值是严格⼩于 D 点的值的。但是当 [C,D] 区间只有⼀个元素的时候, C 点的值是可能等于 D 点的值的。
因此,初始化左右两个指针 left , right :
然后根据 mid 的落点,我们可以这样划分下⼀次查询的区间:
- 当 mid 在 [A,B] 区间的时候,也就是 mid 位置的值严格⼤于 D 点的值,下⼀次查询区间在 [mid + 1,right] 上;
- 当 mid 在 [C,D] 区间的时候,也就是 mid 位置的值严格⼩于等于 D 点的值,下次
查询区间在 [left,mid] 上。
当区间⻓度变成 1 的时候,就是我们要找的结果
🚩代码实现
class Solution {
public int findMin(int[] nums) {
int left = 0;
int right = nums.length - 1;
int cmp = nums[right];
while(left < right) {
int cmd = (left + right ) / 2;
if(nums[cmd] > cmp) {
left = cmd + 1;
} else {
right = cmd;
}
}
return nums[left];
}
}
🎍点名
🚩题目描述
某班级 n 位同学的学号为 0 ~ n-1。点名结果记录于升序数组 records。假定仅有一位同学缺席,请返回他的学号。
-
示例 1:
输入: records = [0,1,2,3,5]
输出: 4 -
示例 2:
输入: records = [0, 1, 2, 3, 4, 5, 6, 8]
输出: 7
🚩思路解析
关于这道题中,时间复杂度为 O(N) 的解法有很多种,⽽且也是⽐较好想的,这⾥就不再赘述。
本题只讲解⼀个最优的⼆分法,来解决这个问题。
在这个升序的数组中,我们发现:
-
在第⼀个缺失位置的左边,数组内的元素都是与数组的下标相等的;
-
在第⼀个缺失位置的右边,数组内的元素与数组下标是不相等的。
因此,我们可以利⽤这个「⼆段性」,来使⽤「⼆分查找」算法。文章来源:https://www.toymoban.com/news/detail-713321.html
🚩代码实现
class Solution {
public int missingNumber(int[] nums) {
int left = 0;
int right = nums.length - 1;
while(left < right) {
int mid = left + (right - left) / 2;
if(nums[mid] == mid) {
left = mid + 1;
} else {
right = mid;
}
}
return left == nums[left] ? left + 1 : left;
}
}
⭕总结
关于《【算法优选】 二分查找专题——贰》就讲解到这儿,感谢大家的支持,欢迎各位留言交流以及批评指正,如果文章对您有帮助或者觉得作者写的还不错可以点一下关注,点赞,收藏支持一下!文章来源地址https://www.toymoban.com/news/detail-713321.html
到了这里,关于【算法优选】 二分查找专题——贰的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!