2.Intelligent Reflecting Surfaces (IRS)

这篇具有很好参考价值的文章主要介绍了2.Intelligent Reflecting Surfaces (IRS)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

The passage discusses the challenges faced by users in multiuser Virtual Reality (VR) streaming systems due to low Signal-to-Interference-plus-Noise Ratio (SINR) and proposes the use of Intelligent Reflecting Surfaces (IRS) to address this issue. Here are the key points:

  1. Low SINR Challenges: In multiuser VR streaming systems, certain users may experience a low SINR due to their location relative to the base station. This low SINR can result from factors such as a large path loss, weak channel gain, or interference from nearby users.

  2. Impact on Rate Splitting (RS) Systems: A low SINR can significantly degrade the performance of Rate Splitting (RS) systems. RS systems rely on transmitting a common message to exploit shared interests among users. However, the transmission rate of the common message is limited by the user with the minimum SINR. This means that if one user has a low SINR, the amount of data that can be transmitted via the common message is restricted, which, in turn, limits the multiplexing gain achievable through RS.

  3. Proposed Solution: Intelligent Reflecting Surface (IRS): To address this issue, the proposed solution is to deploy an Intelligent Reflecting Surface (IRS). An IRS is a surface equipped with reconfigurable reflecting elements that can manipulate and enhance wireless signals. By using IRS, it’s possible to increase the minimum SINR experienced by users, even those located far from the base station or in interference-prone areas.

  4. Improving RS System Performance: The deployment of IRS is expected to improve the performance of the RS system. By enhancing the SINR for all users, the RS system can transmit more data via the common message, thereby increasing the multiplexing gain and, subsequently, the overall performance of the system.

In essence, the proposal to deploy Intelligent Reflecting Surfaces (IRS) in multiuser VR streaming systems aims to mitigate the challenges associated with low SINR by improving the wireless environment for all users. This improvement can lead to a more effective use of Rate Splitting (RS) techniques and enhance the overall quality of the VR streaming experience, particularly for users who may face challenging signal conditions.文章来源地址https://www.toymoban.com/news/detail-713428.html

到了这里,关于2.Intelligent Reflecting Surfaces (IRS)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Deep Reinforcement Learning + Potential Game + Vehicular Edge Computing

    文献 [1] 采用deep reinforcement learning和potential game研究vehicular edge computing场景下的任务卸载和资源优化分配策略 文献[2] 采用potential game设计车载边缘计算信道分配方法。 Exact potential game(简称EPG)是一个多人博弈理论中的概念。在EPG中,每个玩家的策略选择会影响到博弈的全局

    2023年04月17日
    浏览(48)
  • 【论文阅读】Dynamic Split Computing for Efficient Deep Edge Intelligence

    作者:Arian Bakhtiarnia, Nemanja Milošević, Qi Zhang, Dragana Bajović, Alexandros Iosifidis 发表会议: ICML 2022 DyNN Workshop ICASSP 2023 发表单位: ∗DIGIT, Department of Electrical and Computer Engineering, Aarhus University, Denmark. †Faculty of Sciences, University of Novi Sad, Serbia. ‡Faculty of Technical Sciences, University of N

    2024年02月11日
    浏览(61)
  • 【知识积累】Edge vs Fog Computing 边缘计算和雾计算的基本介绍

    边缘计算和雾计算都可以被定义为技术平台,使计算过程更接近数据产生和收集的地方,以下详细解释了这两个概念。 顾名思义,边缘计算发生在应用网络的“边缘”。从拓扑结构上看,“边缘计算机”在网络的端点上(如控制器和传感器)或者在这些端点的旁边。在这些端

    2023年04月08日
    浏览(36)
  • 论文阅读06-Task Offloading Optimization in Mobile Edge Computing based on Deep Reinforcement Learning

    标题:Task Offloading Optimization in Mobile Edge Computing based on Deep Reinforcement Learning 会议:MSWiM ’23 (CCF-C) 注:本文仅用户学习。 问题:边缘计算可以很好地缓解云计算网络拥塞和高通信开销等问题。然而,考虑到边缘计算资源是有限的,需要采用合理的优化策略提高首先资源的

    2024年02月21日
    浏览(54)
  • Edge and Cloud Computing within open ecosystems for a seamless IT and OT integration

    当今自动化和制造业面临的最重要挑战之一是如何最好地收集、评估和处理数据。 “时间就是金钱”这句话尤其适用于自动化领域,因为生产或操作设备的任何停机时间都可能导致延误,从而导致高昂的成本。借助全面的数字监控系统,可以最大限度地减少甚至避免此类停机

    2024年02月02日
    浏览(40)
  • A Blockchain-Enabled Federated Learning System with Edge Computing for Vehicular Networks边缘计算和区块链

    摘要:在大多数现有的联网和自动驾驶汽车(CAV)中,从多辆车收集的大量驾驶数据被发送到中央服务器进行统一训练。然而,在数据共享过程中,数据隐私和安全没有得到很好的保护。此外,集中式体系结构还存在一些固有问题,如单点故障、过载请求、无法容忍的延迟等

    2024年02月05日
    浏览(40)
  • 智能反射表面(IRS)代码-两跳

           智能反射平面(intelligent reflecting surfaces)是一种被动反射表面,其具有的特性是可控制反射信号的相位,而且该反射表面无需任何的能量辅助,与传统高能耗的中继系统相比,引用反射表面可大大降低能耗。所以,智能反射表面被应用于多个邻域。        物理层安

    2023年04月16日
    浏览(32)
  • Intelligent driver model(IDM)

      在文章中除了IDM模型,也会提及其余的交通模型。本文主要想讲述IDM的基本原理以及它是如何在以下两种模式之间进行转换的。 * IDM has two modes : free-flow and car-following . Free-flow mode : the target vehicles track a desired speed . Car-following : the target vehicle follows the preceding vehicle at a sa

    2024年02月07日
    浏览(30)
  • 智能反射面(IRS)在无线通信安全领域应用的论文复现

    Zhang Rui老师的将IRS引入无线通信安全的论文《Secure Wireless Communication via Intelligent Reflecting Surface》有较高的引用量,在此给出要论文的复现及代码。 该论文的目的是引入IRS并联合优化基站的主动式波束和IRS的被动式波束,使得抑制窃听者信噪比的同时最大化合法用户处的信噪

    2023年04月15日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包