八大排序算法(含时间复杂度、空间复杂度、算法稳定性)

这篇具有很好参考价值的文章主要介绍了八大排序算法(含时间复杂度、空间复杂度、算法稳定性)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


八大排序算法(含时间复杂度、空间复杂度、算法稳定性),C/C++,排序算法,算法,排序算法,c语言,c++

八大排序算法(含时间复杂度、空间复杂度、算法稳定性)

下列算法默认都是对数组进行升序

1、(直接)插入排序

1.1、算法思想

  • 插入排序是一种简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

    插入排序的具体步骤如下:

    1. 从第一个元素开始,该元素可以认为已经被排序;
    2. 取出下一个元素,在已经排序的元素序列中从后向前扫描;
    3. 如果该元素(已排序)大于新元素,将该元素移到下一位置;
    4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
    5. 将新元素插入到该位置后;
    6. 重复步骤2~5。
八大排序算法(含时间复杂度、空间复杂度、算法稳定性),C/C++,排序算法,算法,排序算法,c语言,c++

八大排序算法(含时间复杂度、空间复杂度、算法稳定性),C/C++,排序算法,算法,排序算法,c语言,c++


1.2、排序过程图解

  • 从第一个元素开始,该元素可以认为已经被排序,取出下一个元素并记录到临时变量tmp中,在已经排序的元素序列中从后向前扫描(end--),如果该元素(已排序)大于新元素,将该元素移到下一位置,如果该元素小于等于新元素,则直接在这个元素的后面把新元素放进来。

    八大排序算法(含时间复杂度、空间复杂度、算法稳定性),C/C++,排序算法,算法,排序算法,c语言,c++

    八大排序算法(含时间复杂度、空间复杂度、算法稳定性),C/C++,排序算法,算法,排序算法,c语言,c++

    • 这里仅演示部分过程,其他过程自行考虑(和上述过程类似)。

1.3、排序代码

  • end指向当前要插入元素的前一个位置end+1指向当前要插入元素的位置),tmp保存当前要插入的元素,在已经排序的元素序列中从后向前扫描,找到比新元素小的元素的时候(因为有序,这个位置前面的元素比这个元素更小),直接把新元素插入到这个位置的后面。

    //插入排序
    void InsertSort(int *arr, int n) {
    
        for (int i = 0; i < n - 1; ++i) {
            //一趟
            int end = i;
            int tmp = arr[end + 1];
            while (end >= 0) {
                if (tmp < arr[end]) {
                    arr[end + 1] = arr[end];
                } else {
                    break;
                }
                --end;
            }
            arr[end + 1] = tmp;
        }
    }
    
  • 时间复杂度计算:

    • 最坏时间复杂度:数组元素原本是降序,现要求使其升序。那么每个元素需要移动或者比较的次数为:

      • 第一个元素:0
      • 第二个元素:1
      • 第三个元素:2
      • 第n个元素:n-1

      总次数:0+1+2+3+...+n-1 = n*(n-1)/2

      所以最坏时间复杂度为:O(n^2)

    • 最好时间复杂度:考虑数组原本是升序,那么所有元素需要移动或者比较的总次数为:0+1+1+...+1 = n-1。所以最好时间复杂度为O(n)

    • 平均时间复杂度:O(n^2) ----> 算法不太行

  • 空间复杂度计算:由于没有开辟额外空间来辅助数组排序,故空间复杂度为O(1)

  • 算法稳定性稳定,因为对于值相同的元素,后插入的时候不会插到相同元素的前面(tmp >= arr[end]break,即不插入)。


2、希尔排序

希尔排序详解


3、冒泡排序

3.1、算法思想

  • 冒泡排序是通过对相邻元素的比较和位置交换,使得每次遍历都可以得到剩余元素中的最大值,将其放入有序序列中最终的位置,然后下一趟排序的时候就不用去比较这个已经确定了的元素。在冒泡排序中,会依次比较相邻元素的值,若发现逆序则交换,使值较大的元素逐渐从前移向后部,就如同水底下的气泡一样逐渐向上冒。
八大排序算法(含时间复杂度、空间复杂度、算法稳定性),C/C++,排序算法,算法,排序算法,c语言,c++

3.2、排序过程图解

  • 每趟排序可以把一个元素”冒“到最终位置上,下一趟排序就可以少排序一个元素。

    八大排序算法(含时间复杂度、空间复杂度、算法稳定性),C/C++,排序算法,算法,排序算法,c语言,c++

    八大排序算法(含时间复杂度、空间复杂度、算法稳定性),C/C++,排序算法,算法,排序算法,c语言,c++

    • 这里仅演示部分过程,其他过程自行考虑(和上述过程类似)。

3.3、排序代码

  • 指针i控制每趟需要少排序的元素个数(即已经有i个元素已经在最终位置上),指针j用来比较相邻元素的大小,若相邻元素是降序,则交换这两个元素。

  • 这里定义了一个flag,用来标记每趟排序是否有交换,如果有交换,就需要继续下一趟排序,没有交换则说明数组已经有序,那么就不用继续下一趟排序!

    void Swap(int *a, int *b) {
        int tmp = *a;
        *a = *b;
        *b = tmp;
    }
    
    //冒泡排序
    void BubbleSort(int *arr, int n) {
        for (int i = 0; i < n; ++i) {
            int flag = 0;
            for (int j = 0; j < n - 1 - i; ++j) {
                if (arr[j + 1] < arr[j]) {
                    flag = 1;
                    Swap(&arr[j], &arr[j + 1]);
                }
            }
            if (flag == 0) {
                break;
            }
        }
    }
    
  • 时间复杂度计算:

    • 最坏时间复杂度:考虑数组原本是降序,现在要求其升序。那么每个元素需要移动或者比较的次数为:

      • 第一趟排序:n-1
      • 第二趟排序:n-2
      • 第三趟排序:n-3
      • 第n趟排序:1

      总次数:n-1+n-2+n-3+...+1 = n*(n-1)/2

      所以最坏时间复杂度为:O(n^2)

    • 最好时间复杂度:考虑数组原本是升序。那么所有元素需要移动或者比较的次数为:

      若不使用flag:比较次数为n-1+n-2+n-3+...+1 = n*(n-1)/2次。

      使用flag:比较次数为n-1次。

    • 平均时间复杂度:O(n^2) —> 算法不太行

  • 空间复杂度计算:由于没有开辟额外空间来辅助数组排序,故空间复杂度为O(1)

  • 算法稳定性稳定,因为对于值相同的元素,每一趟排序的时候不会交换(arr[j + 1] < arr[j]才交换)。


4、(简单)选择排序

4.1、算法思想

  • 选择排序是一种简单直观的排序算法。它的工作原理如下:(优化后的选择排序–>每次都能确定当前未排序序列的最小元素和最大元素的最终位置)
    1. 在未排序序列中找到最小元素和最大元素,最小元素存放到排序序列的起始位置,最大元素存放到排序序列的末尾位置。
    2. 再从剩余未排序元素中继续寻找最小元素和最大元素,然后最小元素放到前面已排序序列的末尾最大元素放到后面已排序序列的前面
    3. 以此类推,直到所有元素均排序完毕。
  • 这里动画排序是每次选出一个最小值。(我们讲的算法更优哈哈)
八大排序算法(含时间复杂度、空间复杂度、算法稳定性),C/C++,排序算法,算法,排序算法,c语言,c++

4.2、排序过程图解

  • 在未排序序列中找到最小元素和最大元素,最小元素存放到排序序列的起始位置,最大元素存放到排序序列的末尾位置。

    八大排序算法(含时间复杂度、空间复杂度、算法稳定性),C/C++,排序算法,算法,排序算法,c语言,c++

  • 再从剩余未排序元素中继续寻找最小元素和最大元素,然后最小元素放到前面已排序序列的末尾最大元素放到后面已排序序列的前面

    八大排序算法(含时间复杂度、空间复杂度、算法稳定性),C/C++,排序算法,算法,排序算法,c语言,c++

    • 这里仅演示部分过程,其他过程自行考虑(和上述过程类似)。
  • 以此类推,直到所有元素均排序完毕。


4.3、排序代码

  • 使用minimaxi分别记录当前未排序的最小值下标和最大值下标在未排序的序列中找出最小值和最大值,然后分别交换到当前未排序的起始位置和末尾位置。需要注意的是如果当前未排序的序列中,最大值刚好在未排序序列的起始位置,那么就需要记录好这个最大值与当前未排序的序列中的最小值交换后的位置,不记录的话,那么当前maxi指向的值不一定是最大值!

    //选择排序
    void SelectSort(int *arr, int n) {
        int mini = 0;
        int maxi = 0;
        int start = 0;
        int end = n - 1;
        while (start < end) {
            for (int i = start + 1; i <= end; ++i) {
                if (arr[i] > arr[maxi]) {
                    maxi = i;
                }
                if (arr[i] < arr[mini]) {
                    mini = i;
                }
            }
            Swap(&arr[mini], &arr[start]);
            //注意此时如果start刚好是最大值的话,就会把最大值换走了,也就是本来最大值在 0 位置,交换后换到其他位置了,所以判断一下
            if (start == maxi) {
                maxi = mini;//找到最大值的下标
            }
            Swap(&arr[maxi], &arr[end]);
            //向中间靠拢
            ++start;
            --end;
        }
    }
    
  • 时间复杂度计算:对于选择排序排序来说,没有什么最坏时间复杂度和最好时间复杂度,因为不管原数组起始是升序还是降序,元素之间的比较次数都是一样的:

    • 确定了2个元素的最终位置:n-1
    • 确定了4个元素的最终位置:n-1+n-3
    • 确定了6个元素的最终位置:n-1+n-3+n-5
    • 确定了n个元素的最终位置:n+n-3+n-5+...+1 = n*(n+1)/4 <---大约,所以时间复杂度为O(n^2)
  • 空间复杂度计算:由于没有开辟额外空间来辅助数组排序,故空间复杂度为O(1)

  • 算法稳定性不稳定,考虑序列(1,2,2),排序后序列为(1,2,2),我们发现2的相对位置发生了变化,所以是不稳定的排序算法。


5、堆排序

堆排序详解


6、快速排序

快速排序递归方法和非递归方法详解


7、归并排序

快速排序递归方法和非递归方法详解


8、计数排序

8.1、算法思想

  • 计数排序就是使用一个临时数组来记录这个原数组的元素对应这个临时数组下标出现的次数,然后再对这个临时数组0开始往后按下标出现的次数遍历。

  • 优化:对于原数组最小值较大的情况,我们可以使用对这个临时数组进行==重定位==。

    • 重定位:相当于计算机组成原理里面的将逻辑地址转化为物理地址的过程,比如序列110,110,111,120,125,122,115,118,112,118,其实它的范围就是在110~125,区间长度为16,如果我们按照这个序列的最大值来建立数组,那么需要长度为126的数组,但是这个数组的前110个空间都是0,也就是并没有用上,浪费了。但是如果创建一个长度为16的数组,下标为0~15(原数组每个元素减110,这个110是这个原数组的最小值),是不是就可以匹配这个序列的范围了呢?

      那么问题是之后遍历这个临时数组,只能得到0~15的下标,并不是我们要的110~125!其实,在遍历这个临时数组的时候,可以继续使用重定位,把这个0~15的下标重定位到110~125(每个下标都加110,这个110是这个原数组的最小值)!

八大排序算法(含时间复杂度、空间复杂度、算法稳定性),C/C++,排序算法,算法,排序算法,c语言,c++

8.2、排序过程图解

  • 先找到原数组的最大值和最小值,然后就可以确定临时数组的长度,然后初始化这个临时数组(全0)。

    八大排序算法(含时间复杂度、空间复杂度、算法稳定性),C/C++,排序算法,算法,排序算法,c语言,c++

  • 然后依次遍历原数组,根据重定位,将原数组的元素减去最小值去对应临时数组的下标,并对这个下标里的元素+1

    八大排序算法(含时间复杂度、空间复杂度、算法稳定性),C/C++,排序算法,算法,排序算法,c语言,c++

  • 遍历这个临时数组,对每个下标进行遍历,按下标对应的元素值看需要对此下标遍历几次(需要重定位回去—加上原数组的最小值)。

    八大排序算法(含时间复杂度、空间复杂度、算法稳定性),C/C++,排序算法,算法,排序算法,c语言,c++


8.3、排序代码

  • minmax记录原数组的最小值和最大值,确定临时数组的长度(max-min+1),然后对临时数组count进行初始化,接下来就是把原数组里的元素重定位为临时数组的下标(元素值减原数组的最小值),并对此下标对应的元素+1,一直到遍历完原数组。

  • 遍历这个临时数组count,对每个下标进行遍历,按下标对应的元素值看需要对此下标遍历几次(需要重定位回去—加上原数组的最小值)。

  • 注意:这里不能找最大最小值的下标,因为在重定位回去的时候arr[j++]在变,也就是最小值下标不一定对应到最小值了!

    //计数排序
    void CountSort(int *arr, int n) {
        //先找出数组的最大最小值
        int max = arr[0];
        int min = arr[0];
        for (int i = 1; i < n; ++i) {
            if (arr[i] > max) {
                max = arr[i];
            }
            if (arr[i] < min) {
                min = arr[i];
            }
        }
        //节省空间,需要对元素重定位
        int capacity = max - min + 1;//元素大小区间
        //记录每个元素的出现次数
        int *count = (int *) malloc(sizeof(int) * capacity);
        if (count == NULL) {
            perror("malloc error");
            exit(-1);
        }
        memset(count, 0, sizeof(int) * capacity);
        for (int i = 0; i < n; ++i) {
            count[arr[i] - min]++;
        }
        int j = 0;
        for (int i = 0; i < capacity; ++i) {
            while (count[i]--) {
                arr[j++] = i + min;
            }
        }
        free(count);
    }
    
  • 时间复杂度计算:这里找最大值最小值花费时间n,遍历临时数组花费时间k(临时数组长度),所以时间复杂度为O(n+k)

  • 空间复杂度计算:使用了临时数组(临时数组长度为k),所以空间复杂度为O(k)

  • 算法稳定性稳定,因为它是利用一个数据的索引来记录元素出现的次数,而这个数组的索引就是元素的数值。当计数排序完成后,具有相同数值的元素在数组中的位置也相同,因此它们的顺序保持不变。


八大排序算法整体的时间复杂度、空间复杂度、算法稳定性等看如下表格:

排序算法 平均时间复杂度 最好情况 最坏情况 空间复杂度 排序方式 稳定性
(直接)插入排序 O(n^2) O(n) O(n^2) O(1) 内部排序 稳定
希尔排序 O(n^1.3) O(n^1.3) O(n^1.3) O(1) 内部排序 不稳定
冒泡排序 O(n^2) O(n) O(n^2) O(1) 内部排序 稳定
(简单)选择排序 O(n^2) O(n^2) O(n^2) O(1) 内部排序 不稳定
堆排序 O(nlogn) O(nlogn) O(nlogn) O(1) 内部排序 不稳定
快速排序 O(nlogn) O(nlogn) O(n^2) O(logn) 内部排序 不稳定
归并排序 O(nlogn) O(nlogn) O(nlogn) O(n) 外部排序 稳定
计数排序 O(n+k) O(n+k) O(n+k) O(k) 外部排序 稳定

OKOK,八大排序算法就到这里。如果你对Linux和C++也感兴趣的话,可以看看我的主页哦。下面是我的github主页,里面记录了我的学习代码和leetcode的一些题的题解,有兴趣的可以看看。

Xpccccc的github主页文章来源地址https://www.toymoban.com/news/detail-713487.html

到了这里,关于八大排序算法(含时间复杂度、空间复杂度、算法稳定性)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构】排序算法复杂度 及 稳定性分析 【图文详解】

    前面给大家讲述了各大排序算法的原理、思路以及实现步骤、代码码源,下面让我们来对比一下各大排序之间的算法复杂度以及稳定性分析优劣,加深我们对于各排序算法的理解,帮助我们以后能更快的在具体场景下选择出最适的排序算法。 【数据结构】冒泡排序 (码源实

    2024年02月05日
    浏览(98)
  • 【数据结构初阶】八大排序算法+时空复杂度

    学会控制自己是人生的必修课 1.直接插入排序思想: 假设现在已经有一个有序序列,如果有一个数字插入到这段序列的末尾,我们会选择拿这个数和它前面的每个数字都比较一遍,如果前面的数字比他大,那我们就让前面的数字赋值到这个被插入的数字位置,依次与前面的数

    2024年02月01日
    浏览(116)
  • 【算法基础】时间复杂度和空间复杂度

    1 算法的评价 2 算法复杂度 2.1 时间复杂度(Time Complexity) 2.1.1 如何计算时间复杂度: 2.1.2 常见的时间复杂度类别与示例 2.2 空间复杂度 2.2.1 如何计算空间复杂度 2.2.2 常见的空间复杂度与示例 3 时间复杂度和空间复杂度计算示例 例子1:计算数组中所有元素的和。 例子2:快

    2024年02月08日
    浏览(58)
  • 算法的时间复杂度与空间复杂度

    1.算法效率 2.时间复杂度 3.空间复杂度 4.复杂度oj题目 1.算法效率 1.1 如何衡量一个算法的好坏 一辆车的好坏我们可以从价格,油耗...... 方面来衡量,但衡量一个算法的好坏我们该从哪一个方面入手呢?比如斐波那契数列: 斐波那契数列的递归实现方式非常简洁,但简洁一定

    2024年02月15日
    浏览(85)
  • 算法的时间复杂度和空间复杂度

    目录 本章重点 一 时间复杂度 2.1 时间复杂度的概念 2.2 大O的渐进表示法 2.3 常见的时间复杂度的计算 二 空间复杂度 三 常见复杂度对比 四 复杂度的oj练习 4.1 消失的数字 4.2 旋转数字 每一天都是人生限定,每一天都值得100%努力 (1)算法效率(2)时间复杂度(3)空间复

    2024年02月01日
    浏览(51)
  • 算法之【时间复杂度】与【空间复杂度】

    目录 一、算法 1、算法定义 2、两种算法的比较 3、算法的特性 4、算法设计的要求 二、算法的复杂度 1、时间复杂度 1.1定义 1.2大O的渐近表示法 1.3推导大O阶方法 1.4最坏情况与平均情况 1.5常见的时间复杂度计算示例 🍂常数阶: 🍂线性阶:  🍂对数阶: 🍂平方阶: 2、空间

    2024年02月05日
    浏览(62)
  • 算法学习22:时间复杂度 和 空间复杂度

    提示:以下是本篇文章正文内容: 😍😍😍文章链接👍👍👍 提示:这里对文章进行总结: 💕💕💕

    2024年04月22日
    浏览(99)
  • 算法的时间复杂度、空间复杂度如何比较?

    目录 一、时间复杂度BigO 大O的渐进表示法: 例题一: 例题2: 例题3:冒泡排序的时间复杂度 例题4:二分查找的时间复杂度 书写对数的讲究: 例题5:  实例6: 利用时间复杂度解决编程题 ​编辑思路一: 思路二: 源码: 思路三: 回顾位操作符 二、空间复杂度详解 概念

    2024年02月15日
    浏览(72)
  • 如何衡量算法的效率?时间复杂度&&空间复杂度

    本篇博客会讲解如何衡量一个算法的效率。衡量算法的效率,主要有2个维度,分别是:时间复杂度和空间复杂度。 时间复杂度用来衡量算法的时间效率。时间复杂度越低,算法的耗时越短,效率则越高。 空间复杂度用来衡量算法的空间效率。空间复杂度越低,算法占用的空

    2023年04月20日
    浏览(43)
  • 数据结构:算法(特性,时间复杂度,空间复杂度)

    算法(Algorithm)是对 特定问题求解步骤 的一种描述,它是指令的有限序列,其中的每条指令表示一个或多个操作。 一个算法必须总在执行有穷步之后结束,且每一步都可在有穷时间内完成。 算法必须是有穷的,而程序可以是无穷的 算法中每条指令必须有确切的含义,对于

    2024年02月06日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包