【Linux进行时】进程地址空间

这篇具有很好参考价值的文章主要介绍了【Linux进行时】进程地址空间。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

进程地址空间

【Linux进行时】进程地址空间,Linux,操作系统,linux,运维,服务器

例子引入:

我们在讲C语言的时候,老师给大家画过这样的空间布局图,但是我们对它不了解

【Linux进行时】进程地址空间,Linux,操作系统,linux,运维,服务器

我们写一个代码来验证Linux进程地址空间

#include<stdio.h>
#include<assert.h>
#include<unistd.h>
int g_value=100;
int main()
{
  pid_t id=fork();
  assert(id>=0);
  if(id==0)
  {
   //child
   while(1)
  {
   printf("我是子进程,我的id是:%d,我的父进程是:%d,  g_value:%d,&g_value:%p\n",getpid(),getppid(),g_value,&g_value);
   sleep(1);
  }
  }                                                                                                                             
  else
  {
   //father
   while(1)
   {
   printf("我是父进程,我的id是:%d,我的父进程是:%d,g_value:%d,&g_value:%p\n",getpid(),getppid(),g_value,&g_value);
   sleep(2);
   }          
   }  
  return 0;
}          
                                

【Linux进行时】进程地址空间,Linux,操作系统,linux,运维,服务器

这里没什么问题,就是他们的g_valule 和其地址都是一样的,

我们将代码调整一下,让子进程的g_value++

#include<stdio.h>
#include<assert.h>
#include<unistd.h>
int g_value=100;
int main()
{
  pid_t id=fork();
  assert(id>=0);
  if(id==0)
  {
   //child
   while(1)
  {
   printf("我是子进程,我的id是:%d,我的父进程是:%d,g_value:%d,&g_value:%p\n",getpid(),getppid(),g_value,&g_value);
   sleep(1);
   g_value++;//只有子进程会进行修改
  }
  }                                                                                                                             
  else
  {
   //father
   while(1)
   {
   printf("我是父进程,我的id是:%d,我的父进程是:%d,g_value:%d,&g_value:%p\n",getpid(),getppid(),g_value,&g_value);
   sleep(2);
   }          
   }  
  return 0;
}                                 

【Linux进行时】进程地址空间,Linux,操作系统,linux,运维,服务器

我们可以发现子进程的g_value变了,但是父进程没有变,两个的地址还是一样的

❓为什么他们两个地址相同但是读出来的数据不同呢?(下文会解答)

🔥子进程对全局数据修改,并不影响父进程!——进程具有独立性!

❓这个地址会是物理地址?💡不会

显然这个地址绝对不是物理地址!所以我们平常在语言层面用的地址,绝对不是物理地址,所以以前用的指针绝对不是地址,其实这个地址叫做虚拟地址or线性地址

故事引入:

香港某个老板非常滴有钱,有10亿美金,他有 4个私生子,每个私生子都并不知道对方的存在,他们都以为自己是独生子。因为他们彼此不知道对方的存在,所以他们在生活和工作上也没有交集,不会有任何互相的影响(这就是独立性的体现)。财阀老板为了维护自己的独立性:

他就对大儿子说:“儿子,你好好学习,以后老爹钱都是你的。”,大儿子一听卧槽真好,高枕无忧,就好好学习,一想到自己以后有钱,就更想学习了。

然后又对二儿子说:“儿子,好好工作,等以后我就把公司给你。”,二儿子一听热泪盈眶,于是就好好工作,等着将来有一天可以继承公司。

后来又对三儿子说:“儿子,你好好干活,等你长大老爹的家产交给你!”,三儿子知道自己以后会继承老爹的所有财产,开心坏了,就努力的干活。

后来又对四儿子说:“儿子,你好好干活,等你长大老爹的家产交给你!”,四儿子知道自己以后会继承老爹的所有财产,开心坏了,就努力的干活。

只要在财阀爹的可承受范围内,孩子要多少钱他都给多少钱,所以三个儿子自然都认为自己有很多钱。财阀老板给他的三个儿子画了一张虚拟的、不存在的大饼,让他们都能努力学习工作干活(这个步骤就是给他们分别建立了进程地址空间)。

【Linux进行时】进程地址空间,Linux,操作系统,linux,运维,服务器

画的饼:进程地址空间,10亿美金:内存,老板:操作系统,四个私生子是进程

❓大富翁,要不要把“饼”管理起来呢?

显然需要的,遵循先描述再组织的原则

所以,进程地址空间,就是就是给进程画的大饼

进程地址空间 → 逻辑上抽象的概念 → 让每个进程都认为自己独占系统的所有资源

**概念:**操作系统通过软件的方式,给进程提供一个软件视角,认为自己是独占系统的所有资源(内存)。

【Linux进行时】进程地址空间,Linux,操作系统,linux,运维,服务器

区域和页表:

什么叫做区域?我们来拿一张桌子来理解,初中的时候小花和小胖分过 “38线”

三八线的本质就是区域划分!

【Linux进行时】进程地址空间,Linux,操作系统,linux,运维,服务器

🔥地址空间本身就是一个线性区域,地址空间是线性结构的!

struct mm_struct {
    long code_start;
    long code_end;
    
    long init_start;
    long init_end;
    
    long uninit_start;
    long uninit_end;
    
    long heap_start;
    long heap_end;
    
    long stack_start;
    long stack_end;
    ...
}

如果限定了区域,那么区域之间的数据是什么?

是虚拟地址or线性地址

🔥程序加载到内存,由程序变成进程后,由操作系统给每个进程构建的一个页表结构,就是 页表

🔥数据和代码真正只能在内存中!

找到地址不是目的,而是手段

【Linux进行时】进程地址空间,Linux,操作系统,linux,运维,服务器

回到之前那个问题:

❓为什么他们两个地址相同但是读出来的数据不同呢?

💡如果子进程对数据进行了修改,因为进程具有独立性,子进程的修改不能影响父进程

子进程这里的 物理地址改了,但是虚拟地址没有改

写时拷贝发生在物理地址,虚拟地址没有变

因为进程具有独立性,比如如果此时子进程把变量改了(写入),就会导致父进程识别的问题就出现了父进程和子进程不一的情况,因为进程是具有独立性的,所以我们就要做到互不影响。我们的子进程要进行修改了,影响到父进程怎么办?没关系!操作系统会出手!当我们识别到子进程要修改时,操作系统会重新给子进程开辟一段空间,并且把 100 拷贝下来,重新给进程建立映射关系,所以子进程的页表就不再指向父进程所对应的 100 了,而直接指向新的 100。你在做修改时又把它的值从 100 改成 200 时,我们就出现了 “改的时候永远改的是页表的右侧,左侧不变” 的情况,所以最后你看到了父子进程的虚拟地址一样,但是经过页表映射到了不同的物理内存,所以了你看到了一个是 100 一个是 200,父子进程的数据不同的结果。

我们的操作系统当我们的父子对数据进行修改时,操作系统会给修改的一方重新开辟一块空间,并且把原始数据拷贝到新空间当中,这种行为就是 写时拷贝!

当父子有任何一个进程尝试修改对应变量时,有一个人想修改,就会触发写时拷贝,让他去拷贝新的物理内存,这只需要重新构建也表的映射关系,虚拟地址是不发生任何变化的,所以最终你看的结果是虚拟地址不变,而内容不同。

这个结构也体现了进程具有独立性

pid_t id=fork()
if(){}
else
{}

❓fork在返回的时候,父子都有,return两次,id是不是pid_T类型定义的变量呢?

💡是的,返回的本质就是写入!谁先返回,谁就让OS发生写时拷贝

如果是父进程就返回pid,如果是子进程就返回0

为什么进程地址空间要存在?

❓如果没有地址空间,我们OS是如何工作呢?

💡这里就是害怕野指针的情况,要寻找一个地址因为你的代码错误找到了一个越界地址时写入时会使别人的进程错了而且很不安全,因此有了页表和虚拟空间

🔥这两个存在的意义:1.防止地址随意访问,保护物理内存与其他进程

❓常量字符串不能修改,这是为什么呢?💡因为页表访问的时候是有权限的,权限不能修改

char*str=“hello world”;
*str=‘H’;

🔥先来将另外一个扩充:malloc的本质——

❓向OS申请内存,操作系统立马给你,还是说在你需要的时候给你?

💡1.在你需要的时候给你,OS一般不允许任何的浪费或者不高效

2.申请内存==立马使用呢?不一定等于立马使用

3.在你申请成功之后,和你使用之前就有一段小小的时间窗口,这个空间没有被正常使用,但是别人用不了—-闲置状态

🔥如果有500进程这样的话,这样操作系统就有大块的空间处于这种状态,这种情况叫做缺页中断

❓因为有页表,你关心不关心你申请的空间是在物理空间的哪一块呢?💡不关心,一样的文章来源地址https://www.toymoban.com/news/detail-713578.html

到了这里,关于【Linux进行时】进程地址空间的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Linux进行时】磁盘文件结构

    上篇文章,我们提及文件是存放在磁盘当中,本篇文件我们来了解一下磁盘的结构!!! ❓什么是磁盘? 💡磁盘(disk)是指利用磁记录技术存储数据的存储器。 磁盘是计算机主要的存储介质,可以存储大量的二进制数据,并且断电后也能保持数据不丢失。早期计算机使用

    2024年02月05日
    浏览(37)
  • Linux 使用 PTP 进行时间同步

    PTP(精确时间协议)是一种用于在网络中进行时钟同步的协议。当与硬件支持结合使用时,PTP 能够达到亚微秒的精度,这种精度远高于 NTP 协议。 PTP 时间同步协议的支持分为内核空间和用户空间两部分。在 Linux 系统中,PTP 协议的实际实现称为 LinuxPTP,它是 PTPv2 根据 Linux 的

    2024年04月11日
    浏览(33)
  • MySQL:查询时进行时间比较

    在 MySQL 中查数据的时候,往往需要对记录的创建时间进行筛选,比如只需要查询今年1-5月份的,或者查询距离当前时间多久以前的。 本文介绍了在 MySQL 中查询记录时如何进行时间比较 解决办法:使用 TIMESTAMPDIFF 函数 查询特定时间范围的记录有多种方法,这里介绍几种 查询

    2024年02月16日
    浏览(36)
  • Arrow:在项目中进行时间处理的强大工具

    目录 一、Arrow简介 二、安装与配置 三、基础功能与使用 1. 日期和时间格式转换 2. 时区处理 3. 时间序列分析 四、进阶应用与案例分析 五、性能与优化 六、最佳实践与经验分享 七、总结与展望 在处理日期和时间时,我们经常需要一个精确、可靠的库来帮助我们。Python的Ar

    2024年02月02日
    浏览(49)
  • Mybatis-Plus如何进行时间日期的比较

    获取数据库中跟当前日期相等的记录时,还是调用eq方法,所以实体类包括数据库中的类型是Date,而不是DateTime,否则只能获取相同时刻的数据。 Mybatis-Plus的时间比较是基于数据库的函数进行的,而不是字符串的比较。在Mybatis-Plus中,可以使用Wrapper对象的 ge、gt、le、lt 方法

    2024年02月11日
    浏览(36)
  • ESP8266调用NTP服务器进行时间校准

    NTP是网络时间协议(Network Time Protocol,简称NTP),是一种用于同步计算机时间的协议。NTP服务器指的是提供NTP服务的计算机或设备。NTP服务器的主要功能是保证网络上的所有设备的时间同步,以确保各个设备相互之间的时间协调一致。NTP服务器通常连接到具有高度精确时间源

    2024年02月08日
    浏览(32)
  • 【数据挖掘】使用 LSTM 进行时间和序列预测

            每天,人类在执行诸如过马路之类的任务时都会做出被动预测,他们估计汽车的速度和与汽车的距离,或者通过猜测球的速度并相应地定位手来接球。这些技能是通过经验和实践获得的。然而,由于涉及众多变量,预测天气或经济等复杂现象可能很困难。在这种情

    2024年02月15日
    浏览(35)
  • 2.电赛进行时......(AD9833(DDS)模块的学习使用)

    如果是玫瑰,它总会开花的。——歌德 直接数字合成是生成模拟信号的一种常用方法,简单意义上的DDS,主要由相位累加器、相位幅度转换、数模转换器组成。 因为AD9833的输入时钟频率最高是25MHz,由于奈奎斯特采样定律的限制,输出波形的每个周期内至少要2个点才能还原

    2024年02月10日
    浏览(29)
  • CentOS上如何配置手动和定时任务自动进行时间同步

    Linux(Centos)上使用crontab实现定时任务(定时执行脚本): Linux(Centos)上使用crontab实现定时任务(定时执行脚本)_centos 定时任务-CSDN博客 Winserver上如何配置和开启NTP客户端进行时间同步: Winserver上如何配置和开启NTP客户端进行时间同步_配置windows ntp客户端-CSDN博客 在Centos上如何进行

    2024年02月20日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包