【数据结构初阶】算法的时间复杂度和空间复杂度

这篇具有很好参考价值的文章主要介绍了【数据结构初阶】算法的时间复杂度和空间复杂度。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.算法效率

1.1 如何衡量一个算法的好坏

如何衡量一个算法的好坏呢?比如对于以下斐波那契数列:

long long Fib(int N)
{
	if (N < 3)
		return 1;
	return Fib(N - 1) + Fib(N - 2);
}

斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?

1.2 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

2.时间复杂度

2.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
	int count = 0;
	for (int i = 0; i < N; ++i)
	{
		for (int j = 0; j < N; ++j)
		{
			++count;
		}
	}
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

【数据结构初阶】算法的时间复杂度和空间复杂度,数据结构,算法,数据结构
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法

2.2 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为:
N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:

最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

2.3常见时间复杂度计算举例

实例一:

// 计算Func2的时间复杂度?
void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

O(N)

实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)

实例二:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
	int count = 0;
	for (int k = 0; k < M; ++k)
	{
		++count;
	}
	for (int k = 0; k < N; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

O(N+M)

实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)
【数据结构初阶】算法的时间复杂度和空间复杂度,数据结构,算法,数据结构

实例三:

// 计算Func4的时间复杂度?
void Func4(int N)
{
	int count = 0;
	for (int k = 0; k < 100; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

O(1)

实例3基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O(1)
【数据结构初阶】算法的时间复杂度和空间复杂度,数据结构,算法,数据结构

实例四:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );//str中查找一个字符串

实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)
【数据结构初阶】算法的时间复杂度和空间复杂度,数据结构,算法,数据结构

实例五:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

O(N^2)

实例5基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最
坏,时间复杂度为 O(N^2)
【数据结构初阶】算法的时间复杂度和空间复杂度,数据结构,算法,数据结构

实例六:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
	assert(a);
	int begin = 0;
	int end = n - 1;
	// [begin, end]:begin和end是左闭右闭区间,因此有=号
	while (begin <= end)
	{
		int mid = begin + ((end - begin) >> 1);
		if (a[mid] < x)
			begin = mid + 1;
		else if (a[mid] > x)
			end = mid - 1;
		else
			return mid;
	}
	return -1;
}

O(logN)

实例6基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底
数为2,对数为N。有些地方会写成lgN。(建议通过折纸查找的方式讲解logN是怎么计算出来的)
【数据结构初阶】算法的时间复杂度和空间复杂度,数据结构,算法,数据结构
【数据结构初阶】算法的时间复杂度和空间复杂度,数据结构,算法,数据结构

实例七:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
	if (0 == N)
		return 1;
	return Fac(N - 1) * N;
}

O(N)

实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。
【数据结构初阶】算法的时间复杂度和空间复杂度,数据结构,算法,数据结构
总结:递归算法时间复杂度是多次调用次数累加

实例八:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
	if (N < 3)
		return 1;
	return Fib(N - 1) + Fib(N - 2);
}

实例8通过计算分析发现基本操作递归了2^N 次,时间复杂度为O(2^N)。(建议画图递归栈帧的二叉树讲解)
【数据结构初阶】算法的时间复杂度和空间复杂度,数据结构,算法,数据结构
【数据结构初阶】算法的时间复杂度和空间复杂度,数据结构,算法,数据结构
补:【数据结构初阶】算法的时间复杂度和空间复杂度,数据结构,算法,数据结构

3.空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因
此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

案例一:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

实例1使用了常数个额外空间(int n,int exchange,int end),所以空间复杂度为 O(1)

实列二:

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
	if (n == 0)
		return NULL;
	long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
	fibArray[0] = 0;
	fibArray[1] = 1;
	for (int i = 2; i <= n; ++i)
	{
		fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
	}
	return fibArray;
}

实例2动态开辟了N个空间,空间复杂度为 O(N)

实例三:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
	if (N == 0)
		return 1;
	return Fac(N - 1) * N;
}

【数据结构初阶】算法的时间复杂度和空间复杂度,数据结构,算法,数据结构

实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)
时间一去不复返,空间可重复利用->了解函数栈帧

4. 常见复杂度对比

一般算法常见的复杂度如下
【数据结构初阶】算法的时间复杂度和空间复杂度,数据结构,算法,数据结构
【数据结构初阶】算法的时间复杂度和空间复杂度,数据结构,算法,数据结构

💘不知不觉,【数据结构初阶】算法的时间复杂度和空间复杂度以告一段落。通读全文的你肯定收获满满,让我们继续为数据结构学习共同奋进!!!文章来源地址https://www.toymoban.com/news/detail-713633.html

到了这里,关于【数据结构初阶】算法的时间复杂度和空间复杂度的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 算法之时间复杂度---数据结构

    目录 前言: 1.时间复杂度 1.1时间复杂度的理解 1.2规模与基本操作执行次数 1.3大O渐进表示法 1.4计算基本操作的次数 2.常见的时间复杂度及其优劣比较 ❤博主CSDN:啊苏要学习     ▶专栏分类:数据结构◀   学习数据结构是一件有趣的事情,希望读者能在我的博文切实感受到

    2024年02月05日
    浏览(67)
  • 数据结构——算法的时间复杂度

    🌇个人主页:_麦麦_ 📚今日名言: 生命中曾经有过的所有灿烂,都终究需要用寂寞来偿还。 ——《百年孤独》 目录 一、前言 二、正文         1.算法效率                 1.1如何衡量一个算法的好坏                 1.2算法的复杂度         2. 时间复杂度      

    2024年02月03日
    浏览(52)
  • 算法的时间复杂度和空间复杂度(数据结构)

    目录 1、算法效率 1如何衡量一个算法的好坏 2算法的复杂度 2、时间复杂度 1时间复杂度的概念 2大O的渐进表示法 2时间复杂度计算例题 1、计算Func2的时间复杂度 2、计算Func3的时间复杂度 3、计算Func4的时间复杂度 4、计算strchr的时间复杂度 5、计算BubbleSort的时间复杂度 6、计算

    2024年02月03日
    浏览(68)
  • 【数据结构和算法】时间复杂度和空间复杂度

    目录   一、前言 二、时间复杂度 2.1时间复杂度表示形式 2.1.1规则: 3.1如何计算时间复杂度 3.1.1线性阶 3.1.2平方阶 3.1.3对数阶 常见的时间复杂度排序: 三、空间复杂度 3.1Java的基本类型内存占用 数据结构和算法是程序的灵魂,这是某位程序员大佬所言,学习了这门,我们便可

    2023年04月09日
    浏览(48)
  • 数据结构与算法-时间复杂度与空间复杂度

    数据结构是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。 算法就是定义良好的计算过程,他取一个或一组的值为输入,并产生一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果。 算法在

    2024年02月07日
    浏览(49)
  • 数据结构与算法—时间复杂度和空间复杂度

    目录 1、什么是数据结构? 2、什么是算法? 3、算法的复杂度 4、时间复杂度 (1) 时间复杂度的概念:  (2) 大O的渐进表示法:  六个例题: (3) 时间复杂度对比:  三个例题:  OJ题分析时间复杂度 5、空间复杂度 (1)常见复杂度对比  (2)OJ题分析空间复杂度 小结 数据结构 (D

    2024年02月07日
    浏览(92)
  • 数据结构--算法的时间复杂度和空间复杂度

    算法效率是指 算法在计算机上运行时所消耗的时间和资源 。这是衡量算法执行速度和资源利用情况的重要指标。 例子: 这是一个斐波那契函数,用的是递归的计算方法,每次创建函数就会在栈区开辟一块空间,递归次数越多,开辟空间越多; 所以, 代码的简洁说明不了算

    2024年02月15日
    浏览(49)
  • 【数据结构与算法篇】时间复杂度与空间复杂度

       目录 一、数据结构和算法 1.什么是数据结构?  2.什么是算法? 3.数据结构和算法的重要性 二、算法的时间复杂度和空间复杂度 1.算法效率 2.算法的复杂度 3.复杂度在校招中的考察 4.时间复杂度 5.空间复杂度  6.常见复杂度对比 7.复杂度的OJ练习   👻内容专栏:《数据结

    2023年04月24日
    浏览(67)
  • 学习数据结构:算法的时间复杂度和空间复杂度

    衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。 时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。 算法的时间复杂度 算法中的基本操作的执行次数,为算法的时间复杂度。 算法的

    2024年04月11日
    浏览(45)
  • 数据结构 | 算法的时间复杂度和空间复杂度【详解】

    数据结构(Data Structure)是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。 算法(Algorithm):就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转

    2024年02月08日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包