数学建模:多目标优化算法

这篇具有很好参考价值的文章主要介绍了数学建模:多目标优化算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

🔆 文章首发于我的个人博客:欢迎大佬们来逛逛

数学建模:多目标优化算法

多目标优化

分别求权重方法

算法流程:

  1. 两个目标权重求和,化为单目标函数,然后求解最优值

min ⁡ x ∑ i = 1 m w i F i ( x )  s.t.  g ( x ) ⩽ 0 h ( x ) = 0 \begin{array}{ll}\min _{x} & \sum_{i=1}^{m} {w_{i} F_{i}(x)} \\\\\text { s.t. } & g(x) \leqslant 0 \\\\& h(x)=0\end{array} minx s.t. i=1mwiFi(x)g(x)0h(x)=0

clc;clear;

%% 指定初始解
x0 = zeros(3,1);
% <线性>不等约束
A = [2,1,3];
B = [6];
% <线性>等式约束
Aeq = [];
Beq = [];
% 变量上下限
LB = zeros(3,1);
UB = 1*ones(3,1);
%% 乘以权重,化为单目标求最优值
% 有几个目标函数,就写几个权重,然后依次相乘再相加
W1 =0.5;
W2 = 0.5;
fun = @(x) (-x(1)^2+x(2)^2-x(2)*x(3)^2)*W1 + (2*x(1)^2-x(2)^3+2*x(2)*x(3))*W2;

%% 取得非线性不等式约束函数
nonlcon = @noLinearLimited;
%% 求解fun单目标最优值
[x,fval] = fmincon(fun,x0,A,B,Aeq,Beq,LB,UB,nonlcon);

objstr=['目标函数最优值:',num2str(-fval)];
disp(objstr)
for i=1:length(x)
    xstr=['x',num2str(i),'的值为:',num2str(x(i))];
    disp(xstr)
end

%% 非线性不等式约束的表达式,如果有多个,则在C后面加; 补充即可
function [C,Ceq] = noLinearLimited(x)
    C = [x(1)^2+x(1)*x(2)+x(2)*x(3)-x(2)-6];
    Ceq = [];
end

Goal attain方法求解

  1. 使用Goal attain求解目标最优化问题,可以调用matlab中的函数:fgoalattain

min ⁡ γ , x γ  s.t.  F i ( x ) − w i γ ⩽ F i ∗  for  i = 1 , … , m g ( x ) ⩽ 0 h ( x ) = 0 \begin{array}{ll}\min _{\gamma, x} \gamma \\\\\text { s.t. } & F_{i}(x)-w_{i} \gamma \leqslant F_{i}^{*} \quad \text { for } i=1, \ldots, m \\\\& g(x) \leqslant 0 \\\\& h(x)=0\end{array} minγ,xγ s.t. Fi(x)wiγFi for i=1,,mg(x)0h(x)=0文章来源地址https://www.toymoban.com/news/detail-714014.html

clc;clear;

%% 指定初始解
x0 = zeros(3,1);
% <线性>不等约束
A = [2,1,3];
B = [6];
% <线性>等式约束
Aeq = [];
Beq = [];
% 变量上下限
LB = zeros(3,1);
UB = 1*ones(3,1);
%% 分两个(n个)非线性目标的最优值
% 两个目标函数
fun1 = @(x) -x(1)^2+x(2)^2-x(2)*x(3);
fun2 = @(x) 2*x(1)^2-x(2)^3+2*x(2)*x(3);

%% fun1的最优化:
nonlcon = @noLinearLimited;
[x1,fval1] = fmincon(fun1,x0,A,B,Aeq,Beq,LB,UB,nonlcon);

objstr=['目标函数最优值:',num2str(fval1)];
disp(objstr)
for i=1:length(x1)
    xstr=['x',num2str(i),'的值为:',num2str(x1(i))];
    disp(xstr)
end

% fun2的最优化:
[x2,fval2] = fmincon(fun2,x0,A,B,Aeq,Beq,LB,UB,nonlcon);

objstr=['目标函数最优值:',num2str(fval2)];
disp(objstr)
for i=1:length(x2)
    xstr=['x',num2str(i),'的值为:',num2str(x2(i))];
    disp(xstr)
end
%% 多目标优化
goal = [fval1,fval2]; % 目标是接近于单目标的最优值
func = @(x) [-x(1)^2+x(2)^2-x(2)*x(3);2*x(1)^2-x(2)^3+2*x(2)*x(3)];
W = [1,1];% 自己赋值权重,两个(n个)非线性
[x,fval] = fgoalattain(func,x0,goal,W,A,B,Aeq,Beq,LB,UB,nonlcon);

disp('在两个目标的优化结果为')
disp(func(x))
for i=1:length(x)
    xstr=['x',num2str(i),'的值为:',num2str(x(i))];
    disp(xstr)
end

%% 非线性不等式约束的表达式,如果有多个,则在C后面加; 补充即可
function [C,Ceq] = noLinearLimited(x)
    C = [x(1)^2+x(1)*x(2)+x(2)*x(3)-x(2)-6];
    Ceq = [];
end

到了这里,关于数学建模:多目标优化算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数学建模】 MATLAB 蚁群算法

    MATLAB–基于蚁群算法的机器人最短路径规划 * https://blog.csdn.net/woai210shiyanshi/article/details/104712540?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522168853912916800215023827%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257Drequest_id=168853912916800215023827biz_id=0utm_medium=distribute.pc_search_result.

    2024年02月15日
    浏览(48)
  • 【数学建模】《实战数学建模:例题与讲解》第十四讲-模拟退火、遗传算法(含Matlab代码)

    本系列侧重于例题实战与讲解,希望能够在例题中理解相应技巧。文章开头相关基础知识只是进行简单回顾,读者可以搭配课本或其他博客了解相应章节,然后进入本文正文例题实战,效果更佳。 如果这篇文章对你有帮助,欢迎点赞与收藏~ 现代优化算法,自20世纪80年代初开

    2024年02月04日
    浏览(54)
  • 数学建模:线性与非线性优化算法

    🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 优化算法 是指在满足一定条件下,在众多方案中或者参数中最优方案,或者参数值,以使得某个或者多个功能指标达到最优,或使得系统的某些性能指标达到最大值或者最小值 优化的两个关键点: 1.明确优化的目标函数 2.明确优化

    2024年02月07日
    浏览(42)
  • 数学建模:智能优化算法及其python实现

    优化问题是指在满足一定条件下,在众多方案或参数值中寻找最优方案或参数值,以使得某个或多个功能指标达到最优,或使系统的某些性能指标达到最大值或最小值。优化问题广泛地存在于信号处理、图像处理、生产调度、任务分配、模式识别、自动控制和机械设计等众多

    2024年02月03日
    浏览(48)
  • 数学建模|多目标规划+序贯算法|简要原理+实例matalb代码实现

    (1) 正负偏差变量 【衡量每个目标的完成情况】 设  为第i个目标函数的实际值; 设  表示  的目标值 正偏差变量   【表示实际值 超过 目标值的部分】    负偏差变量 【表示实际值 未达到 目标值的部分】    实例说明: 目标函数实际值 目标值 正偏差变量 负偏差变量

    2024年02月12日
    浏览(38)
  • Matlab数学建模算法之模拟退火算法(SA)详解

    🔗 运行环境:Matlab 🚩 撰写作者:左手の明天 🥇 精选专栏:《python》 🔥  推荐专栏:《算法研究》 🔐####  防伪水印——左手の明天 #### 🔐 💗 大家好🤗🤗🤗,我是 左手の明天 !好久不见💗 💗今天分享 matlab数学建模算法 —— 模拟退火算法 💗

    2024年01月16日
    浏览(46)
  • 数学建模算法汇总(全网最全,含matlab案例代码)

      全国大学生数学建模竞赛中,常见的算法模型有以下30种: 最小二乘法 数值分析方法 图论算法 线性规划 整数规划 动态规划 贪心算法 分支定界法 蒙特卡洛方法 随机游走算法 遗传算法 粒子群算法 神经网络算法 人工智能算法 模糊数学 时间序列分析 马尔可夫链 决策树 支

    2024年02月08日
    浏览(48)
  • 【数学建模竞赛】优化类赛题常用算法解析

    问题理解和建模:首先,需要深入理解问题,并将问题抽象为数学模型。这包括确定问题的目标函数、约束条件和决策变量。 模型分析和求解方法选择:对建立的数学模型进行分析,可以使用数学工具和方法,例如最优化算法、梯度下降法、遗传算法、模拟退火等。根据问题

    2024年02月09日
    浏览(44)
  • 数学建模十大算法03—线性规划、整数规划、非线性规划、多目标规划

    一、线性规划(Linear Programming,LP) 1.1 引例 在人们的生产实践中,经常会遇到 如何利用现有资源来安排生产,以取得最大经济效益的问题。 此类问题构成了运筹学的一个重要分支一数学规划,而 线性规划(Linear Programming, LP) 则是数学规划的一个重要分支。 简而言之,线

    2024年02月13日
    浏览(46)
  • 数学建模之回归分析算法(含matlab源代码)

    目录 一、一元线性回归 1、步骤  2、matlab命令(多元线性回归) 3、举例  二、一元非线性回归  三、多项式回归 1、一元多项式回归  应用  2、多元二项式 应用  四、非线性回归  应用 五、 逐步回归  应用    r²和F越大越好 p越小越好      从残差图可以看出,除第二个

    2024年02月09日
    浏览(68)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包