基于FPGA的图像自适应阈值二值化算法实现,包括tb测试文件和MATLAB辅助验证

这篇具有很好参考价值的文章主要介绍了基于FPGA的图像自适应阈值二值化算法实现,包括tb测试文件和MATLAB辅助验证。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1Otsu方法

4.2 Adaptive Thresholding方法

4.3、FPGA实现过程

5.算法完整程序工程


1.算法运行效果图预览

基于FPGA的图像自适应阈值二值化算法实现,包括tb测试文件和MATLAB辅助验证,Verilog算法开发,# 图像算法,matlab,图像处理,FPGA,自适应阈值二值化

基于FPGA的图像自适应阈值二值化算法实现,包括tb测试文件和MATLAB辅助验证,Verilog算法开发,# 图像算法,matlab,图像处理,FPGA,自适应阈值二值化

2.算法运行软件版本

Vivado2019.2

matlab2022a

3.部分核心程序

`timescale 1ns / 1ps
//
// Company: 
// Engineer: 
// 
// Create Date: 2022/07/28 01:51:45
// Design Name: 
// Module Name: test_image
// Project Name: 
// Target Devices: 
// Tool Versions: 
// Description: 
// 
// Dependencies: 
// 
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// 
//


module test_image;

reg i_clk;
reg i_rst;
reg [7:0] image_buff [0:100000];
reg [7:0] II0;
wire [7:0] o_Ifilter;
 wire [7:0] o_Ifilter2;
integer fids,jj=0,dat;
 
//D:\FPGA_Proj\FPGAtest\codepz

initial 
begin
	fids = $fopen("D:\\FPGA_Proj\\FPGAtest\\codepz\\data.bmp","rb");
	dat  = $fread(image_buff,fids);
	$fclose(fids);
end
 
initial 
begin
i_clk=1;
i_rst=1;
#2000;
i_rst=0;
end 

always #10  i_clk=~i_clk;
 
always@(posedge i_clk) 
begin
	II0<=image_buff[jj];
	jj<=jj+1;
end
 
 
tops tops_u(
.i_clk              (i_clk),
.i_rst              (i_rst),
.i_I0               (II0),
.o_Ifilter          (o_Ifilter) ,
.o_Ifilter2         (o_Ifilter2)
);

integer fout1;
initial begin
  fout1 = $fopen("o_Ifilter.txt","w");
end

always @ (posedge i_clk)
 begin
    if(jj<=66614)
	$fwrite(fout1,"%d\n",o_Ifilter);
	else
	$fwrite(fout1,"%d\n",0);
end
integer fout2;
initial begin
  fout2 = $fopen("o_Ifilter2.txt","w");
end

always @ (posedge i_clk)
 begin
    if(jj<=66614)
	$fwrite(fout2,"%d\n",o_Ifilter2);
	else
	$fwrite(fout2,"%d\n",0);
end
endmodule
0X_017m

4.算法理论概述

       图像二值化是数字图像处理中的一种常见技术,可以将灰度图像转换为黑白二值图像,突出图像的轮廓和特征。自适应阈值二值化是一种常用的图像二值化方法,能够根据图像局部区域的灰度分布自适应地确定阈值,从而实现更好的二值化效果。

      自适应阈值二值化算法的基本原理是将图像分为若干个小的子区域,每个子区域内的像素点使用一个共同的阈值进行二值化处理。这个阈值是根据子区域内像素点的灰度分布自适应计算得到的。常用的自适应阈值二值化方法包括Otsu方法和Adaptive Thresholding方法。

4.1Otsu方法

       Otsu方法是一种基于灰度直方图的阈值选择方法,通过优化类间方差来自动确定阈值。设图像的灰度级范围为0~255,灰度直方图表示每个灰度级的像素点数量。Otsu方法的目标是最优地选择一个阈值T,将图像分为前景和背景两部分,使得这两部分的类间方差最大。类间方差公式如下:

σb = w0 * w1 * (μ0 - μ1)²

      其中,w0和w1分别是前景和背景的像素点数量所占比例,μ0和μ1分别是前景和背景的灰度平均值。Otsu方法通过求解类间方差的最大值来自动确定最优阈值T。

4.2 Adaptive Thresholding方法

        Adaptive Thresholding方法是一种基于局部灰度分布的阈值确定方法。该方法将图像分成若干个小的子区域,每个子区域使用一个共同的阈值进行二值化处理。阈值是根据子区域内像素点的灰度分布计算得到的。具体来说,对于每个子区域,计算其灰度平均值和标准差,将灰度平均值减去一个常数(一般为1/2),得到该子区域的阈值。如果子区域内某个像素点的灰度值大于阈值,则将其置为255(白色),否则置为0(黑色)。

4.3、FPGA实现过程

       我们这个课题主要通过4.2的方法来实现基于FPGA的图像自适应阈值二值化算法,其实现过程如下:

  1. 划分子区域:将图像划分为若干个小的子区域,每个子区域的大小可以自定义。可以使用一个二维数组来表示子区域,数组的每个元素表示一个像素点的位置和灰度值。
  2. 计算阈值:对于每个子区域,计算其灰度平均值,并根据公式计算出该子区域的阈值。可以使用Verilog中的相关模块来实现计算过程。
  3. 二值化处理:对于每个像素点,如果其灰度值大于阈值,则将其置为255(白色),否则置为0(黑色)。可以使用一个简单的if-else语句来实现这个过程。
  4. 输出二值化图像:将处理后的二值化图像数据输出到FPGA的I/O口,以供后续显示或传输使用。
  5. 时钟信号:在整个实现过程中,需要使用一个时钟信号来同步数据传输和处理过程。可以使用FPGA的时钟源来生成相应的时钟信号。

        通过将FPGA的高速并行处理能力与自适应阈值二值化算法相结合,可以实现高性能、高效率的图像处理系统。这种实现方法可以广泛应用于数字图像处理、计算机视觉、安防监控等领域。

5.算法完整程序工程

OOOOO

OOO

O文章来源地址https://www.toymoban.com/news/detail-714121.html

到了这里,关于基于FPGA的图像自适应阈值二值化算法实现,包括tb测试文件和MATLAB辅助验证的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 图像二值化阈值调整——cv2.threshold方法

    二值化阈值调整:调整是指在进行图像二值化处理时,调整阈值的过程。阈值决定了将图像中的像素分为黑色和白色的界限,大于阈值的像素被设置为白色,小于等于阈值的像素被设置为黑色。 首先画出灰度直方图:横坐标是灰度值0—255,纵坐标是该灰度值的像素个数。 方

    2024年02月06日
    浏览(54)
  • FPGA|数字图像处理实现口罩识别——二值化

    【写在前面】刚入门小菜鸟,记录一下口罩识别学习过程。参考文件和网址会在文末注明。有错误欢迎指出,也欢迎进行补充~ 原理图如下,二值化对应为红框里的部分 使用的二值化方法是 手动指定一个 阈值 ,通过阈值来进行二值化处理 。(还有一种方法是一个自适应阈值

    2023年04月11日
    浏览(49)
  • 【Opencv--自适应图像二值化】cv2.adaptiveThreshold()

    在这里 cv2.threshold函数 介绍了普通的opencv图像阈值处理函数。但threshold 的图像阈值处理对于某些光照不均的图像,这种全局阈值分割的方法并不能得到好的效果。 图像阈值化操作中,我们更关心的是从二值化图像中分离目标区域和背景区域,仅仅通过固定阈值很难达到理想

    2024年02月07日
    浏览(42)
  • 图像二值化算法

    图像二值化( Image Binarization)就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程。二值图像每个像素只有两种取值:要么纯黑,要么纯白。进行二值化有多种方式,其中最常用的就是采用阈值法(Thresholding)进行二值化。 根据阈值

    2024年02月06日
    浏览(50)
  • 二、FPGA实时图像处理(灰度转换、高斯滤波、二值化和边缘检测)

    基于图像实时采集系统实现图像处理 算法:采用精度为7的心理学公式:Gray = R 0.299 + G 0.587 + B 0.114, Gray = R 38 + G 75 + B 15 7 采用sobel算子进行边缘检测。 可以通过参数定义修改二值化和边缘检测阈值,以及控制是否进行图像处理和图像处理类型选择。 高斯滤波效果不明显不做演

    2024年02月11日
    浏览(53)
  • 基于opencv的c++图像处理(图像二值化)

    基于opencv的c++接口,实现常用的图像二值化方法,包括了最大类间方差法(OTSU)、固定化阈值以及自适应阈值。 该函数将固定级别的阈值应用于多通道阵列。该函数通常用于从灰度图像中获取双层(二进制)图像(#compare 也可用于此目的)或用于去除噪声,即过滤掉值过小

    2024年02月07日
    浏览(51)
  • 利用Python实现图像的二值化

       目录 1、全局阈值法 1.1主要函数: 1.2全局阈值的代码实现 1.3特点 2、自适应阈值法 2.1主要函数: 2.2实现代码: 2.3特点: 3、OTSU二值化(最大类间方差法) 3.1实现代码: 3.2特点 4、实例展示 参考文献:             传统的机器视觉通常包括两个步骤:预处理和物体检测

    2024年02月03日
    浏览(79)
  • 基于自适应曲线阈值和非局部稀疏正则化的压缩感知图像复原研究【自适应曲线阈值去除加性稳态白/有色高斯噪声】(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 文献来

    2024年02月13日
    浏览(47)
  • [图像处理]14.分割算法比较 OTSU算法+自适应阈值算法+分水岭

    参考文献: OTSU阈值分割+孔洞填充+海陆分离_SwordKii的博客-CSDN博客 drawContours函数_普通网友的博客-CSDN博客_drawcontours R329-opencv阈值分割算法——自适应阈值_Third Impact的博客-CSDN博客_opencv自适应阈值分割 分水岭算法的python实现及解析_进不去的博客-CSDN博客_python分水岭算法 分水

    2024年02月09日
    浏览(53)
  • Python与FPGA——全局二值化

      为什么要进行图像二值化,rgb图像有三个通道,处理图像的计算量较大,二值化的图像极大的减少了处理图像的计算量。即便从彩色图像转成了二值化图像,也不影响对物体的识别。本章开始讲解图像二值化。Python包含全局128、全局均值、大津阈值法(OTSU);FPGA只做全

    2024年03月12日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包