Java【动态规划】斐波那契数列模型, 图文思路详解 + 代码实现

这篇具有很好参考价值的文章主要介绍了Java【动态规划】斐波那契数列模型, 图文思路详解 + 代码实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本篇总结动态规划中的斐波那契数列模型的解法和思路

按照以下流程进行分析题目和代码编写

思路分析步骤 代码编写步骤
1, 状态表示 1, 构造 dp 表
2, 状态转移方程 2, 初始化+边界处理
3, 初始化 3, 填表(抄状态转移方程)
4, 填表顺序 4, 返回结果
5, 返回值 /

一、第 N 个泰波那契数

1, 题目

OJ链接

题目分析: 第 N 个数 = 第 N-1 个数 + 第 N-2 个数 + 第 N-3 个数


2, 思路分析

2.1, 状态表示

根据题目要求, 要我们算出第 N 个数是多少, 我们要构造一个dp表(数组), 表中的值就是第 N 个数的值

所以对于整个数列来说, 对于 i(任意数) 位置, 都可以表示成 dp[i]

状态表示 : dp[i] 就是第 i 个泰波那契数


2.2, 状态转移方程

根据 : 第 N 个数 = 第 N-1 个数 + 第 N-2 个数 + 第 N-3 个数 可直接得出

状态转移方程 : dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]

java 斐波那契,算法,java,动态规划,斐波那契数列模型


2.3, 初始化

初始化是为了填表的时候不越界访问

根据状态转移方程可以分析出, dp[i] 依赖前三个数的值, 所以在表中前三个数的值必须手动填, 从第四个数开始可以根据状态转移方程来填

题中已经告诉我们 dp[0] = 0, dp[1] = dp[2] = 1


2.4, 填表顺序

由于dp[i] 依赖前三个数的值, 所以在确定任意位置的值时, 首先要知道前三个数的值, 所以填表顺序是从左往右


2.5, 返回值

要我们求第 N 个数的值, 就是 dp[N]

要访问 dp[N] , dp 表的长度是多少?


3, 代码

在构造 dp 表时, int[] dp = new int[n];是错的, 长度为 n 的数组, 下标是 0 ~ n-1, 要想访问到 dp[n], dp 表的长度应该是 n + 1

public int tribonacci(int n) {
        // 1, 构造dp表
        int[] dp = new int[n + 1];
        // 2, 初始化 + 边界条件判断
        if(n == 0 || n == 1) {
            return n;
        }
        if(n == 2) {
            return 1;
        }
        dp[0] = 0;
        dp[1] = 1;
        dp[2] = 1;
        // 3, 填表(抄状态转移方程)
        for(int i = 3; i <= n; i++) {
            dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];            
        }
        // 4, 返回值
        return dp[n];
    }

二、三步问题

1, 题目

OJ链接

分析题目得知, 在第 N 个台阶时, 可以从第 N - 1 个台阶跳一个台阶上来, 可以从第 N - 2 个台阶跳两个台阶上来, 可以从第 N - 3 个台阶跳三个台阶上来


2, 思路分析

2.1, 状态表示

根据题目要求可知, 在 dp 表中的值就是到达某个台阶时的跳法总数

状态表示 : dp[i] 就是到达第 i 个台阶时, 跳法的总数


2.2, 状态转移方程

以 i 位置状态的最近的⼀步,来分情况讨论, 要求 dp[i], 已经分析过有三种情况

  • 在第 i - 1 个台阶时, 有 ? 种跳法, 加一步即可
  • 从第 i - 2 个台阶时, 有 ? 种跳法, 加一步即可
  • 从第 i - 3 个台阶时, 有 ? 种跳法, 加一步即可

所以在第 i 个台阶时的跳法总数就是 : 上述三个状态的跳法总数的和

状态转移方程 : dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]

问 : 为什么不是 dp[i] = dp[i - 1] + 1 + dp[i - 2] + 1 + dp[i - 3] + 1 呢? 不是多跳了一步吗?
答 : 是多跳了一步, 但只是在原有的跳法上多跳了一下, 并没有产生新的跳法!!! 这一点一定要理解, 我们求的是有多少种跳法, 而不是跳了多少步!!

实在不理解可以带入第二个台阶, 进行分析
java 斐波那契,算法,java,动态规划,斐波那契数列模型


2.3, 初始化

初始化是为了填表的时候不越界访问

根据状态转移方程可以分析出, dp[i] 依赖前三个数的值, 所以在表中前三个数的值必须手动填, 从第四个数开始可以根据状态转移方程来填

可以简单推导出 dp[1] = 1, dp[2] = 2, dp[3] = 4;

我们让 0 号台阶表示地平线, 不需要给 dp[0] 赋值, 没有意义


2.4, 填表顺序

由于dp[i] 依赖前三个数的值, 所以在确定任意位置的值时, 首先要知道前三个数的值, 所以填表顺序是从左往右


2.5, 返回值

要我们求第 N 个数的值, 就是 dp[N]

要访问 dp[N] , 初始化时 dp 表的长度是多少?


3, 代码

在构造 dp 表时, int[] dp = new int[n];是错的, 长度为 n 的数组, 下标是 0 ~ n-1, 要想访问到 dp[n], dp 表的长度应该是 n + 1

	public int waysToStep(int n) {
        // 1, 构造dp表
        int[] dp = new int[n + 1];
        // 2, 初始化+边界条件处理
        if(n <= 2) {
            return n;
        }
        dp[1] = 1;
        dp[2] = 2;
        dp[3] = 4;
        // 3, 填表(抄状态转移方程)
        for(int i = 4; i <= n ; i++) {
            dp[i] = ((dp[i - 1]  + dp[i - 2]) % 1000000007 +  dp[i-3]) % 1000000007;
        }
        // 4, 返回值
        return dp[n];
    }

三、

1, 题目

OJ链接

分析题目得知, 要达第 N 个台阶, 可以从第 N-1个台阶过来, 也可以从第 N-2 个台阶过来, 如果 cost 数组的长度为 n , 台阶数为 n - 1, 因为 cost[0] 表示从地平线起跳要支付的费用, 楼顶在 n 的位置


2, 思路分析

2.1, 状态表示

我们需要构造 dp 表, 要求到达楼顶的最小花费, 需要先知道中途到达任意位置的最小花费(划分子问题), 所以 状态表示 : dp[i] 就是以 i 为终点, 到达 i 位置的最小花费


2.2, 状态转移方程

以 i 位置状态的最近的⼀步,来分情况讨论, 要求 dp[i](到达 i 位置的最小花费), 有两种情况

  • 从第 i - 1 位置上来 : 在此位置的最小花费 + 从此位置起跳要支付的费用
  • 从第 i - 2 位置上来 : 在此位置的最小花费 + 从此位置起跳要支付的费用

要保证到达 i 位置时花费的钱最少, 就要对这两种方式的费用取较小值

注意题中给的 cost 数组和 dp 数组的关系 :
java 斐波那契,算法,java,动态规划,斐波那契数列模型

状态转移方程 : dp[i] = min (dp[i - 1] + cost[i- 1], dp[i - 2] + cost[i- 2])


2.3, 初始化

初始化是为了填表的时候不越界访问

根据状态转移方程可知, 填 dp 表中的值, 依赖前两个位置的值, 所以在 dp 表中, 0 下标和 1 下标必须初始化

题目已经说明, 可以自由选择从 0 号台阶或 1 号台阶起跳, 所以到达 0 号台阶或 1 号台阶的最小花费为 0 元, 所以 : dp[0] = 0, dp[1] = 0;


2.4, 填表顺序

dp[i] 的值依赖前两个位置的值, 所以填表顺序是从左往右


2.5, 返回值

cost 长度为 N, 则有 N - 1 个台阶, 楼顶在 N 位置, 所以返回 dp[N]

要访问 dp[N] , 初始化时 dp 表的长度是多少?


3, 代码

在构造 dp 表时, int[] dp = new int[n];是错的, 长度为 n 的数组, 下标是 0 ~ n-1, 要想访问到 dp[n], dp 表的长度应该是 n + 1

	public int minCostClimbingStairs(int[] cost) {
        // 构造dp表
        int n = cost.length;
        int[] dp = new int[n + 1];
        // 初始化+边界条件
        dp[0] = 0;
        dp[1] = 0;
        // 填表(抄状态转移方)
        for(int i = 2; i <= n ;i++) {
            dp[i] = Math.min(dp[i - 1] + cost[i  -1], dp[i - 2] + cost[i - 2]) ;
        }
        // 返回值
        return dp[n];
    }

四、

1, 题目

OJ链接


2, 思路分析

2.1, 状态表示

java 斐波那契,算法,java,动态规划,斐波那契数列模型

状态表示 : dp[i] 就是以 i 位置为结尾, 编码方法的总数


2.2, 状态转移方程

以 i 位置状态的最近的⼀步,来分情况讨论, 要求 dp[i], 有两种方式 :

  • i 位置的数字单独解码, 如果解码成功, dp[i] 加上 x , (从0 到 i - 1位置的所有解码方法总数)java 斐波那契,算法,java,动态规划,斐波那契数列模型

  • i 位置的数字和 i - 1 位置的数字一起解码, 如果解码成功, dp[i] 加上 y , (从0 到 i - 2位置的所有解码方法总数)
    java 斐波那契,算法,java,动态规划,斐波那契数列模型

结合状态表示可知 : x = 从0 到 i - 1位置的所有解码方法总数 = dp[i- 1], y = 从0 到 i - 1位置的所有解码方法总数 = dp[i- 2]

所以状态转移方程 : 如果方案一成功, dp[i] += dp[i-1], 如果方案二成功, dp[i] += dp[i-2],

这里千万要搞清楚, 无论哪种方式解码, 都在只是增加了解码的字符串长度, 而不是新增了一种解码方式

无论哪种方式解码, 一旦解码失败, dp[i] += 0 即可, 如果当前位置的解码方式为 0, 计算到下一个位置时, 会依赖当前位置的 dp 值, 所以后面 dp 表中的值都为 0, 最终返回结果为 0


2.3, 初始化

初始化是为了填表的时候不越界访问

根据状态转移方程可知, 填表到某一位置时, 依赖前两个位置的值, 所以初始化dp表中 0 下标和 1 下标即可


2.4, 填表顺序

填表顺序是从左往右


2.5, 返回值

要求的是整个字符串的解码方案总数, 令字符串长度为 n, 返回dp[n - 1]文章来源地址https://www.toymoban.com/news/detail-714287.html


3, 代码

    public int numDecodings(String s) {
        // 构造 dp 表
        int n = s.length();
        int[] dp = new int[n];
        char[] array = s.toCharArray();
        // 初始化+边界条件
        if(array[0] != '0') {
            dp[0] = 1;
        }
        if(n == 1) {
            return dp[0];
        }
        if( array[1] != '0') {
            dp[1] += dp[0];
        }
        int num = (array[0] -'0') * 10 + (array[1]-'0');
        if( num >= 10 && num <= 26 ) {
            dp[1] += dp[0];
        }
        // 填表(抄状态转移方程)
        for(int i = 2; i < n; i++) {
            if(array[i] != '0') {
                dp[i] += dp[i - 1];
            }
            num = (array[i-1] -'0') * 10 + (array[i]-'0');
            if( num >= 10 && num <= 26 ) {
                dp[i] += dp[i - 2];
            }
        }
        // 返回值
        return dp[n - 1];
    }

到了这里,关于Java【动态规划】斐波那契数列模型, 图文思路详解 + 代码实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【动态规划专栏】专题一:斐波那契数列模型--------1.第N个泰波那契数

    本专栏内容为:算法学习专栏,分为优选算法专栏,贪心算法专栏,动态规划专栏以及递归,搜索与回溯算法专栏四部分。 通过本专栏的深入学习,你可以了解并掌握算法。 💓博主csdn个人主页:小小unicorn ⏩专栏分类:动态规划专栏 🚚代码仓库:小小unicorn的代码仓库🚚

    2024年02月21日
    浏览(43)
  • 动态规划入门:斐波那契数列模型以及多状态(C++)

        动态规划(Dynamic programming,简称 DP)是一种解决多阶段决策问题的算法思想。它将问题分解为多个阶段,并通过保存中间结果来避免重复计算,从而提高效率。 动态规划的解题步骤一般分为以下几步: 思考状态表示,创建dp表(重点) 分析出状态转移方程(重点) 初始化 确定

    2024年02月11日
    浏览(44)
  • 【动态规划专栏】专题一:斐波那契数列模型--------2.三步问题

    本专栏内容为:算法学习专栏,分为优选算法专栏,贪心算法专栏,动态规划专栏以及递归,搜索与回溯算法专栏四部分。 通过本专栏的深入学习,你可以了解并掌握算法。 💓博主csdn个人主页:小小unicorn ⏩专栏分类:动态规划专栏 🚚代码仓库:小小unicorn的代码仓库🚚

    2024年02月21日
    浏览(47)
  • Java数据结构与算法:动态规划之斐波那契数列

    大家好,我是免费搭建查券返利机器人赚佣金就用微赚淘客系统3.0的小编。在这寒冷的季节里,让我们一同探讨Java中的动态规划,重点关注解决问题的经典代表之一——斐波那契数列。 动态规划简介 动态规划是一种解决问题的数学方法,通常用于优化递归算法。它通过将问

    2024年01月22日
    浏览(48)
  • 动态规划入门篇——斐波那契数列与爬楼梯问题

           动态规划(Dynamic Programming,简称DP)是运筹学的一个分支,也是求解多阶段决策过程最优化问题的一种方法。它主要用来解决一类最优化问题,通过将复杂问题分解成若干个子问题,并综合子问题的最优解来得到原问题的最优解。动态规划的核心在于对问题的状态进

    2024年03月14日
    浏览(43)
  • DAY42:动态规划(二)斐波那契数列+爬楼梯+最小花费爬楼梯

    斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: 给定 n ,请计算 F(n) 。 示例 1: 示例 2: 示例 3: 提示: 0 = n = 30 思路:动规五步 确定dp数组和数组下标含义 DP题目都需要定义一维

    2024年02月13日
    浏览(57)
  • (动态规划) 剑指 Offer 10- I. 斐波那契数列 ——【Leetcode每日一题】

    难度:简单 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N) )。斐波那契数列的定义如下: F(0) = 0, F(1) = 1 F(N) = F(N - 1) + F(N - 2), 其中 N 1. 斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。 答案需要取模 1e9+7(1000000007),如计

    2024年02月12日
    浏览(56)
  • 动态规划专训1——泰波那契数列模型

    动态规划的思想:将一个问题分隔为若干个子问题,完成子问题得到结构再得到最终的答案 动态规划往往解题步骤固定,分为以下几步 1.找出状态表示 2.完成状态转移方程 3.初始化 4.填表顺序 5.返回值 后面三步偏重细节,二解题的核心就在于前两步,所以要想练好动态规划

    2024年04月29日
    浏览(36)
  • 代码随想录Day32 动态规划01 LeetCodeT509 斐波那契数列 T70 爬楼梯 T746 爬楼梯的最小消耗

    动态规划首先可以解决的问题有背包问题,打家劫舍问题,股票问题,子序列问题等,主要是将一个大的问题切分成多个重叠的子问题,所以动态规划一定是上一个状态递推过来的,有一个重要的 状态转移方程, 但是这也并不是解题的全部,我们将动态规划的题目基本分为五步来完成

    2024年02月06日
    浏览(71)
  • LeetCode刷题---斐波那契数列模型

    顾得泉: 个人主页 个人专栏: 《Linux操作系统》  《C/C++》  《LeedCode刷题》 键盘敲烂,年薪百万! 题目链接:1137. 第 N 个泰波那契数   泰波那契序列Tn定义如下:         T0=0,T1=1,T2= 1,且在n=0的条件下Tn+3= Tn+Tn+1t+Tn+2         给你整数n,请返回第n个泰波那契数Tn的值

    2024年02月04日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包