线性代数中矩阵的特征值与特征向量

这篇具有很好参考价值的文章主要介绍了线性代数中矩阵的特征值与特征向量。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

作者:禅与计算机程序设计艺术

1.简介

1.1 什么是特征值?

在线性代数中,如果一个$n\times n$的方阵$A$满足如下两个条件之一:文章来源地址https://www.toymoban.com/news/detail-714633.html

  • $A$存在实数特征值,即$\exists x\neq 0:Ax=kx$,其中$k\in \mathbb{R}$;
  • $\lambda_{max}(A)\neq 0$($\lambda_{max}(A)$表示$A$的最大特征值),且$||x_{\lambda_{max}(A)}||=\sqrt{\frac{\lambda_{max}(A)}{\lambda_{min}(A)}}$,其中$x_{\lambda_{max}(A)}\neq 0$($x_{\lambda_{max}(A)}$表示$A$的最大特征向量)。那么称$A$为无奇异的。 显然,无奇异矩阵有唯一确定特征值的充要条件就是上述两个条件。而且,特征值具有大小的意义,不同的特征值对应着不同的特征空间,不同的特征空间对应着不同的几何变换。对于正定矩阵来说,所有特征值为正数。

    1.2 什么是特征向量?

    设$\det(A-\lambda I)=0$,其中$\lambda$是矩阵$A$的一个特征值,则称$x_{\lambda}$为矩阵$A$关于$\lambda$的特征向量。$\lambda$称为矩阵$A$的特征值,$x_{\lambda}$称为矩阵$A$的特征向量,对应的特征向量组成了$A$的特征空间。根据特征向量的定义可知,当$A$为实对称矩阵时,只有实数特征向量;而当$A$为复对称矩阵时,有实部和虚部均为零的特征向量。对于一般的$n\times n$的矩阵$A$,其特征空间由$n

到了这里,关于线性代数中矩阵的特征值与特征向量的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 线性代数——特征值和特征向量

    学习高等数学和线性代数需要的初等数学知识 线性代数——行列式 线性代数——矩阵 线性代数——向量 线性代数——线性方程组 线性代数——特征值和特征向量 线性代数——二次型 本文大部分内容皆来自李永乐老师考研教材和视频课。 设 A = [ a i j ] A=[a_{ij}] A = [ a ij ​

    2024年02月15日
    浏览(45)
  • 线性代数 --- 特征值与特征向量

    Part I:特征值,特征向量的意义与性质         已知任意向量x,现有矩阵A对x进行操作后,得到新的向量Ax。这就好比是自变量x与函数f(x)的关系一样,向量x通过类似“函数”的处理得到了一个新的向量Ax。这个新的向量可能和原向量x方向相同,也可能不同(事实上大多都不同

    2024年03月10日
    浏览(50)
  • 线性代数基础 | 特征值和特征向量

    一、特征值和特征向量的定义 A. 特征值的定义和性质 特征值(eigenvalue)是线性代数中一个重要的概念,用于描述线性变换对于某个向量的伸缩效应。在本文中,我们将深入讨论特征值的定义和性质。 首先,我们考虑一个线性变换(或者说一个方阵)A。对于一个非零向量v,

    2024年02月16日
    浏览(43)
  • 线性代数 --- 特征值与特征向量(下)

    Eigen Values Eigen Vectors Part III:如何求解特征向量与特征值 对于一般矩阵A,如何找到他的特征值与特征向量? Step I: Find λ first! 首先,我们有方程: 但这里有两个未知数,因此我们把上面的方程改写一下:         这个齐次方程的解就是矩阵(A-I)的零空间,抛开平凡解全0向

    2024年03月14日
    浏览(49)
  • 线性代数学习之特征值与特征向量

    在上一次线性代数学习之行列式学习了行列式相关的一些概念,其中也多次提到学好行列式是为了学习“特征值和特征向量”的基础,所以此次就正式进入这块内容的学习,也是线性代数中非常重要的概念,因为它又是线性代数其它重要概念的基石比如矩阵的相似性等等,当

    2024年02月11日
    浏览(55)
  • 线性代数基础【5】特征值和特征向量

    一、特征值和特征向量的理论背景 在一个多项式中,未知数的个数为任意多个,且每一项次数都是2的多项式称为二次型,二次型分为两种类型:即非标准二次型及标准二次型 注意: ①二次型X^T AX为非标准二次型的充分必要条件是A^T=A 但A为非对角矩阵;二次型 X^TAX为标准二次型的充

    2024年01月20日
    浏览(50)
  • 线性代数 第五章 特征值与特征向量

    一、特征值定义 二、特征值求法 定义法; ; 相似。 三、特征向量求法 定义法; 基础解系法; ; 相似。 四、特征值性质 不同特征值的特征向量线性无关 k重特征值至多有k个线性无关的特征向量 五、相似的定义 若,则A和B相似。 六、相似的性质(必要条件) 七、可对角

    2024年02月06日
    浏览(52)
  • 线性代数——特征值与特征向量的性质

    (1)设A为方阵,则A与 A T A^{T} A T 有相同的特征值。 此处用到了两个关键性质,一:单位阵的转置为其本身,二:转置并不改变行列式的值。 (2): 设n阶方阵A=( a i j a_{ij} a ij ​ )的n个特征值为 λ 1 lambda_{1} λ 1 ​ , λ 2 lambda_{2} λ 2 ​ ,… λ n lambda_{n} λ n ​ ,则 λ 1 + λ

    2024年02月04日
    浏览(46)
  • 线性代数---第五章特征值和特征向量

    当特征值是二重根时,有可能有一个线性无关的特征向量,也有可能有两个线性无关的特征向量

    2023年04月17日
    浏览(44)
  • 线性代数中的特征值和特征向量

    现将下文需要运用到的一些概念进行解释说明以便读者更好理解 其中,我们要注意两点: (1)A是方阵(对于非方阵,是没有特征值的,但会有条件数)  (2)特征向量为非0列向量 我们再来看看两个相关定理  定理5.1说明了一个矩阵的几个特征向量线性无关 定义5.1的第一

    2024年02月01日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包