分布式内存计算Spark环境部署与分布式内存计算Flink环境部署

这篇具有很好参考价值的文章主要介绍了分布式内存计算Spark环境部署与分布式内存计算Flink环境部署。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

分布式内存计算Spark环境部署

1.  简介

2.  安装

2.1【node1执行】下载并解压

2.2【node1执行】修改配置文件名称

2.3【node1执行】修改配置文件,spark-env.sh

2.4 【node1执行】修改配置文件,slaves

2.5【node1执行】分发

2.6【node2、node3执行】设置软链接

2.7【node1执行】启动Spark集群

2.8  打开Spark监控页面,浏览器打开:

2.9【node1执行】提交测试任务

分布式内存计算Flink环境部署

1.  简介

2.  安装

2.1【node1操作】下载安装包

2. 2【node1操作】修改配置文件,conf/flink-conf.yaml

2.3 【node1操作】,修改配置文件,conf/slaves

2.4【node1操作】分发Flink安装包到其它机器

2.5 【node2、node3操作】

2.6 【node1操作】,启动Flink

2.7   验证Flink启动

2.8   提交测试任务


注意:

本小节的操作,基于:大数据集群(Hadoop生态)安装部署环节中所构建的Hadoop集群,如果没有Hadoop集群,请参阅前置内容,部署好环境。

大数据集群(Hadoop生态)安装部署:

大数据集群(Hadoop生态)安装部署_时光の尘的博客-CSDN博客

大数据NoSQL数据库HBase集群部署:

大数据NoSQL数据库HBase集群部署-CSDN博客

分布式内存计算Spark环境部署

1.  简介

Spark是一款分布式内存计算引擎,可以支撑海量数据的分布式计算。

Spark在大数据体系是明星产品,作为最新一代的综合计算引擎,支持离线计算和实时计算。

在大数据领域广泛应用,是目前世界上使用最多的大数据分布式计算引擎。

我们将基于前面构建的Hadoop集群,部署Spark Standalone集群。

2.  安装

2.1【node1执行】下载并解压

wget https: / archive.apache.org/dist/spark/spark-2.4.5/spark-2.4.5-bin-hadoop2.7.tgz

# 解压
tar -zxvf spark-2.4.5-bin-hadoop2.7.tgz -C /export/server/

# 软链接
ln -s /export/server/spark-2.4.5-bin-hadoop2.7 /export/server/spark

2.2【node1执行】修改配置文件名称

# 改名
cd /export/server/spark/conf
mv spark-env.sh.template spark-env.sh
mv slaves.template slaves

2.3【node1执行】修改配置文件,spark-env.sh

#设置JAVA安装目录
JAVA_HOME=/export/server/jdk

#HADOOP软件配置文件目录,读取HDFS上文件和运行YARN集群
HADOOP_CONF_DIR=/export/server/hadoop/etc/hadoop
YARN_CONF_DIR=/export/server/hadoop/etc/hadoop

#指定spark老大Master的IP和提交任务的通信端口
export SPARK_MASTER_HOST=node1
export SPARK_MASTER_PORT=7077

SPARK_MASTER_WEBUI_PORT=8080
SPARK_WORKER_CORES=1
SPARK_WORKER_MEMORY=1g

2.4 【node1执行】修改配置文件,slaves

node1
node2
node3

2.5【node1执行】分发

scp -r spark-2.4.5-bin-hadoop2.7 node2:$PWD
scp -r spark-2.4.5-bin-hadoop2.7 node3:$PWD

2.6【node2、node3执行】设置软链接

 ln -s /export/server/spark-2.4.5-bin-hadoop2.7 /export/server/spark

2.7【node1执行】启动Spark集群

/export/server/spark/sbin/start-all.sh

# 如需停止,可以
/export/server/spark/sbin/stop-all.sh

2.8  打开Spark监控页面,浏览器打开:

http://node1:8081

2.9【node1执行】提交测试任务

/export/server/spark/bin/spark-submit --master
spark: / node1:7077 - class
org.apache.spark.examples.SparkPi
/export/server/spark/examples/jars/spark-examples_2.11-2.4.5.jar

分布式内存计算Spark环境部署与分布式内存计算Flink环境部署,Linux学习,分布式,spark,大数据,flink,StringBuilder,constructor

分布式内存计算Flink环境部署

1.  简介

Flink同Spark一样,是一款分布式内存计算引擎,可以支撑海量数据的分布式计算。

Flink在大数据体系同样是明星产品,作为最新一代的综合计算引擎,支持离线计算和实时计算。

在大数据领域广泛应用,是目前世界上除去Spark以外,应用最为广泛的分布式计算引擎。

我们将基于前面构建的Hadoop集群,部署Flink Standalone集群

Spark更加偏向于离线计算而Flink更加偏向于实时计算。

2.  安装

2.1【node1操作】下载安装包

wget https: / archive.apache.org/dist/flink/flink-1.10.0/flink-1.10.0-bin-scala_2.11.tgz

# 解压
tar -zxvf flink-1.10.0-bin-scala_2.11.tgz -C
/export/server/

# 软链接
ln -s /export/server/flink-1.10.0
/export/server/flink

2. 2【node1操作】修改配置文件,conf/flink-conf.yaml

# jobManager 的IP地址
jobmanager.rpc.address: node1
# JobManager 的端口号
jobmanager.rpc.port: 6123
# JobManager JVM heap 内存大小
jobmanager.heap.size: 1024m
# TaskManager JVM heap 内存大小
taskmanager.heap.size: 1024m
# 每个 TaskManager 提供的任务 slots 数量大小
taskmanager.numberOfTaskSlots: 2

#是否进行预分配内存,默认不进行预分配,这样在我们不使用flink集群时候不会占用集群资源
taskmanager.memory.preallocate: false
# 程序默认并行计算的个数
parallelism.default: 1
#JobManager的Web界面的端口(默认:8081)
jobmanager.web.port: 8081

分布式内存计算Spark环境部署与分布式内存计算Flink环境部署,Linux学习,分布式,spark,大数据,flink,StringBuilder,constructor

2.3 【node1操作】,修改配置文件,conf/slaves

node1
node2
node3

2.4【node1操作】分发Flink安装包到其它机器

cd /export/server
scp -r flink-1.10.0 node2:`pwd`/
scp -r flink-1.10.0 node3:`pwd`/

2.5 【node2、node3操作】

# 配置软链接
ln -s /export/server/flink-1.10.0
/export/server/flink

2.6 【node1操作】,启动Flink

/export/server/flink/bin/start-cluster.sh

2.7   验证Flink启动

# 浏览器打开
http://node1:8081

2.8   提交测试任务

【node1执行】

/export/server/flink/bin/flink run
/export/server/flink-1.10.0/examples/batch/WordCount.jar

更多环境部署:

分布式内存计算Spark环境部署与分布式内存计算Flink环境部署,Linux学习,分布式,spark,大数据,flink,StringBuilder,constructor

MySQL5.7版本与8.0版本在CentOS系统安装:

MySQL5.7版本与8.0版本在CentOS系统安装_时光の尘的博客-CSDN博客

MySQL5.7版本与8.0版本在Ubuntu(WSL环境)系统安装:

MySQL5.7版本与8.0版本在Ubuntu(WSL环境)系统安装-CSDN博客

Tomcat在CentOS上的安装部署:

Tomcat在CentOS上的安装部署-CSDN博客

Nginx在CentOS上的安装部署、RabbitMQ在CentOS上安装部署:

Nginx在CentOS上的安装部署、RabbitMQ在CentOS上安装部署-CSDN博客

集群化环境前置准备:

集群化环境前置准备_时光の尘的博客-CSDN博客

Zookeeper集群安装部署、Kafka集群安装部署:

Zookeeper集群安装部署、Kafka集群安装部署_时光の尘的博客-CSDN博客文章来源地址https://www.toymoban.com/news/detail-714686.html

到了这里,关于分布式内存计算Spark环境部署与分布式内存计算Flink环境部署的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 如何使用Spark/Flink等分布式计算引擎做网络入侵检测

    如何使用Spark/Flink等分布式计算引擎做网络入侵检测

    ⚠申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计3077字,阅读大概需要3分钟 🌈更多学习内容, 欢迎👏关注👀【文末】我的个人微信公众号:不懂开发的程序猿 个人网站:https://jerry-jy.co/ 本篇博客是我在做 基于Spark/Flink大数据环境下网络入

    2024年02月11日
    浏览(9)
  • 数据存储和分布式计算的实际应用:如何使用Spark和Flink进行数据处理和分析

    作为一名人工智能专家,程序员和软件架构师,我经常涉及到数据处理和分析。在当前大数据和云计算的时代,分布式计算已经成为了一个重要的技术方向。Spark和Flink是当前比较流行的分布式计算框架,它们提供了强大的分布式计算和数据分析功能,为数据处理和分析提供了

    2024年02月16日
    浏览(31)
  • 大数据开源框架环境搭建(七)——Spark完全分布式集群的安装部署

    大数据开源框架环境搭建(七)——Spark完全分布式集群的安装部署

    前言:七八九用于Spark的编程实验 大数据开源框架之基于Spark的气象数据处理与分析_木子一个Lee的博客-CSDN博客_spark舆情分析 目录 实验环境: 实验步骤: 一、解压 二、配置环境变量:  三、修改配置文件  1.修改spark-env.sh配置文件: 2.修改配置文件slaves: 3.分发配置文件:

    2024年02月11日
    浏览(35)
  • Spark单机伪分布式环境搭建、完全分布式环境搭建、Spark-on-yarn模式搭建

    Spark单机伪分布式环境搭建、完全分布式环境搭建、Spark-on-yarn模式搭建

    搭建Spark需要先配置好scala环境。三种Spark环境搭建互不关联,都是从零开始搭建。 如果将文章中的配置文件修改内容复制粘贴的话,所有配置文件添加的内容后面的注释记得删除,可能会报错。保险一点删除最好。 上传安装包解压并重命名 rz上传 如果没有安装rz可以使用命

    2024年02月06日
    浏览(38)
  • 分布式计算框架:Spark、Dask、Ray
分布式计算哪家强:Spark、Dask、Ray

    分布式计算框架:Spark、Dask、Ray 分布式计算哪家强:Spark、Dask、Ray

    目录 什么是分布式计算 分布式计算哪家强:Spark、Dask、Ray 2 选择正确的框架 2.1 Spark 2.2 Dask 2.3 Ray 分布式计算是一种计算方法,和集中式计算是相对的。 随着计算技术的发展, 有些应用需要非常巨大的计算能力才能完成,如果采用集中式计算,需要耗费相当长的时间来完成

    2024年02月11日
    浏览(34)
  • 分布式计算MapReduce | Spark实验

    分布式计算MapReduce | Spark实验

    题目1 输入文件为学生成绩信息,包含了必修课与选修课成绩,格式如下: 班级1, 姓名1, 科目1, 必修, 成绩1 br (注: br 为换行符) 班级2, 姓名2, 科目1, 必修, 成绩2 br 班级1, 姓名1, 科目2, 选修, 成绩3 br ………., ………, ………, ………, ……… br 编写两个Hadoop平台上的MapRed

    2024年02月08日
    浏览(29)
  • 大数据学习06-Spark分布式集群部署

    大数据学习06-Spark分布式集群部署

    配置好IP vim /etc/sysconfig/network-scripts/ifcfg-ens33 修改主机名 vi /etc/hostname 做好IP映射 vim /etc/hosts 关闭防火墙 systemctl status firewalld systemctl stop firewalld systemctl disable firewalld 配置SSH免密登录 ssh-keygen -t rsa 下载Scala安装包 配置环境变量 添加如下配置 使环境生效 验证 Spark官网 解压 上

    2024年02月10日
    浏览(36)
  • 分布式计算框架:Spark、Dask、Ray

    分布式计算框架:Spark、Dask、Ray

    目录 什么是分布式计算 分布式计算哪家强:Spark、Dask、Ray 2 选择正确的框架 2.1 Spark 2.2 Dask 2.3 Ray 分布式计算是一种计算方法,和集中式计算是相对的。 随着计算技术的发展, 有些应用需要非常巨大的计算能力才能完成,如果采用集中式计算,需要耗费相当长的时间来完成

    2024年02月06日
    浏览(7)
  • 【头歌实训】Spark 完全分布式的安装和部署

    掌握 Standalone 分布式集群搭建。 我们已经掌握了 Spark 单机版安装,那么分布式集群怎么搭建呢? 接下来我们学习 Standalone 分布式集群搭建。 课程视频 如果你需要在本地配置 Spark 完全分布式环境,可以通过查看课程视频来学习。 课程视频《克隆虚拟机与配置网络》 课程视

    2024年02月04日
    浏览(6)
  • 【头歌实训】Spark 完全分布式的安装和部署(新)

    【头歌实训】Spark 完全分布式的安装和部署(新)

    第1关: Standalone 分布式集群搭建 任务描述 掌握 Standalone 分布式集群搭建。 相关知识 我们已经掌握了 Spark 单机版安装,那么分布式集群怎么搭建呢? 接下来我们学习 Standalone 分布式集群搭建。 课程视频 如果你需要在本地配置 Spark 完全分布式环境,可以通过查看课程视频来

    2024年02月03日
    浏览(34)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包