搜索与图论:染色法判定二分图

这篇具有很好参考价值的文章主要介绍了搜索与图论:染色法判定二分图。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

将所有点分成两个集合,使得所有边只出现在集合之间,就是二分图

二分图:一定不含有奇数个点数的环;可能包含长度为偶数的环, 不一定是连通图

染色可以使用1和2区分不同颜色,用0表示未染色
遍历所有点,每次将未染色的点进行dfs, 默认染成1或者2
由于某个点染色成功不代表整个图就是二分图,因此只有某个点染色失败就能立刻break/return

染色失败相当于存在相邻的2个点染了相同的颜色,即点的个数的奇数个文章来源地址https://www.toymoban.com/news/detail-715047.html

染色法判定二分图:

#include <iostream>
#include <cstring>

using namespace std;
const int N = 1e5 + 10, M = 2e5 + 10; // 由于是无向图, 顶点数最大是N,那么边数M最大是顶点数的2倍
int e[M], ne[M], h[N], idx;//邻接表
int st[N];//该点的颜色

void add(int a, int b)
{
//头插法
    //如图 如1与2之间要有一条线,让2的ne为1,再让h[1]为2的索引。
    //这样h[1]就是1节点存的最后一个相连的点,如图就是7节点。
    //而在索引表内部,通过头插法的方式(即每次ne指向上一个点(h存的就是上一个点)),索引表为:7->4->2
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}

bool dfs(int u, int color) 
{
    st[u] = color;

    for(int i = h[u]; i != -1; i = ne[i])
    {//遍历邻接表
        int j = e[i];
        if(!st[j]) //若还没颜色,则递归下去染色
        {
        //递归下去
            if(!dfs(j, 3 - color)) return false;//如果当前是3-2=1,则下一次是3-1=2,以此类推,奇数和偶数的点颜色不一样
        }
        //如果该点有颜色,则判断该点的颜色是否跟邻接表的头点颜色相同,相同则说明矛盾
        else if(st[j] == color) return false;
    }
    return true;
}

int main()
{
    int n, m;
    scanf("%d%d", &n, &m);

    memset(h, -1, sizeof h);
    while (m --)
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b), add(b,a);  // 无向图,a->b, b->a
    }

    bool flag = true;
    for(int i = 1; i <= n; i ++)
    {
        if(!st[i])
        {
            if(!dfs(i, 1))//如果返回FALSE,则说明有矛盾发生,flag赋为FALSE
            {
                flag = false;
                break;
            }
        }
    }
    if(flag) printf("Yes\n");
    else printf("No\n");
    return 0;
}

到了这里,关于搜索与图论:染色法判定二分图的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 搜索与图论 - 搜索与图在算法中的应用【中】

    目录 迪杰斯特拉算法Dijkstra  Dijkstra求最短路 I Dijkstra求最短路 II 贝尔曼-福特算法 bellman-ford 有边数限制的最短路 SPFA算法 spfa求最短路  spfa判断负环 Floyd Floyd求最短路   该算法不能存在负权边 思路: 初始化距离数组, dist[1] = 0, dist[i] = inf; for n次循环 每次循环确定一个min加

    2023年04月08日
    浏览(79)
  • 算法基础课-搜索与图论

    题目链接:842. 排列数字 - AcWing题库 思路:写的很好的题解AcWing 842. 排列数字--深度优先遍历代码+注释 - AcWing 也可以考虑使用c++自带的next_permutation函数直接秒了: 题目链接:844. 走迷宫 - AcWing题库 思路:由于bfs是一层一层扩展,所以能保证走到终点时,走过的距离最短,所

    2024年04月15日
    浏览(51)
  • 搜索与图论:匈牙利算法

    将所有点分成两个集合,使得所有边只出现在集合之间,就是二分图 二分图:一定不含有奇数个点数的环;可能包含长度为偶数的环, 不一定是连通图

    2024年02月08日
    浏览(56)
  • 搜索与图论(acwing算法基础)

    排列数字 n皇后 走迷宫 单链表 点击跳转至例题 idx存的是指针 树与图的深度优先搜索 树的重心 每个节点都是一个单链表 模拟队列 hh = 0 , tt = -1 有向图的拓扑序列 都是从前指向后,即有向无环图(不能有环) 所有入度为0的点,都能排在前面的位置 删掉t-j的边,仅仅是j的入度

    2024年02月08日
    浏览(44)
  • 搜索与图论2.2-Floyd算法

    (Floyd) 算法是一种可以快速求解图上所有顶点之间最短路径的算法。 (Bellman-Ford) 和 (Dijkstra) 算法求解的都是从一个起始点开始的最短路。如果想要求解图中所有顶点之间的最短路,就需要枚举每个点做为起点,这样十分低效。 (Floyd) 算法(也称 (Floyd-Warshall) 算法)处理用

    2024年02月08日
    浏览(35)
  • acwing算法基础之搜索与图论--kruskal算法

    kruskal算法的关键步骤为: 将所有边按照权重从小到大排序。 定义集合S,表示生成树。 枚举每条边(a,b,c),起点a,终点b,边长c。如果结点a和结点b不连通(用并查集来维护),则将这条边加入到集合S中。 kruskal算法的时间复杂度为O(mlogm),它用来解决稀疏图的最小生成树问题

    2024年02月05日
    浏览(43)
  • 【算法基础:搜索与图论】3.3 拓扑排序

    https://oi-wiki.org/graph/topo/ 本文主要学习拓扑排序相关知识。 拓扑排序的英文名是 Topological sorting。 拓扑排序要解决的问题是给一个 有向无环图 的 所有节点排序 。 我们可以拿大学每学期排课的例子来描述这个过程,比如学习大学课程中有:程序设计,算法语言,高等数学,

    2024年02月16日
    浏览(48)
  • 【算法基础:搜索与图论】3.2 树与图的dfs和bfs

    要学会建树、建图的通用方法。 dfs 和 bfs 的代码框架。 https://www.acwing.com/problem/content/848/ 在 dfs 的过程中,统计各个节点作为断点时的连通块最大值。 https://www.acwing.com/problem/content/849/ 看到最短距离就可以想到使用宽搜。 注意! :题目中说明了 a 和 b 表示存在一条从 a 走到

    2024年02月16日
    浏览(38)
  • Acwing-基础算法课笔记之搜索与图论

    bellman-ford算法适用于负权边的图,求 1 到 n 的最多经过k条边的最短距离。 如图所示: 1 2 3 dist 0 ∞ infty ∞ ∞ infty ∞ ⇓ Downarrow ⇓ 1 2 3 dist 0 1 ∞ infty ∞ ⇓ Downarrow ⇓ 1 2 3 dist 0 1 2 此过程中出现了串联的结果,所以是错误的,此时需要进行备份操作。 备份操作如下: 为了

    2024年01月20日
    浏览(54)
  • acwing算法基础课(第三讲 搜索与图论)

    void dfs(int u){ if(n == u){ for(int i = 0;i n;i++) puts(g[i]); puts(“”); return; } for(int i = 0;i n;i++){ if(!col[i] !dg[u+i] !udg[n - u + i]){ g[u][i] = ‘Q’; col[i] = dg[u+i] = udg[n - u + i] = true; dfs(u+1); col[i] = dg[u+i] = udg[n - u + i] = false; g[u][i] = ‘.’; } } } int main(){ scanf(“%d”,n); for(int i = 0;i n;i++){ for(int j = 0;j

    2024年04月10日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包