9、电路综合-基于简化实频的任意幅频响应的微带电路设计

这篇具有很好参考价值的文章主要介绍了9、电路综合-基于简化实频的任意幅频响应的微带电路设计。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

9、电路综合-基于简化实频的任意幅频响应的微带电路设计

网络综合和简化实频理论学习概述中的1-8介绍了SRFT的一些基本概念和实验方法,终于走到了SRFT的究极用途,给定任意响应直接综合出微带电路。

1、任意幅频响应的微带电路设计用途

我们演示了采用相应传输线的经典微波滤波器的设计过程。设计方法的第一步是选择合适的传递函数。显然,传递函数的形式必须反映设计要求。对于许多实际情况,使用通过巴特沃斯或切比雪夫多项式构造的现成低通类型原型函数可能就足够了。

然而,对于某些应用,换能器功率增益(TPG)的期望形状可以由所考虑的问题以任意方式决定。例如,可以利用补偿信道失真的无损滤波器来均衡通信信道的增益失真。
9、电路综合-基于简化实频的任意幅频响应的微带电路设计,网络综合和简化实频理论,硬件工程,射频工程,网络,学习,5G
当然,这种设计方法也可以用于匹配电路的设计分析(根据匹配目标之间生成对应的微带线电路)。

2、之前的一些回顾与总结

之前也给出了一些电路综合的案例,但是这些案例必须基于解析函数形式的S参数,在更为一般的情况下我们难以基于此去完成设计,我们往往需要基于要设计电路的幅频响应和相频响应去设计实际的电路:

5、电路综合-超酷-基于S11参数直接综合出微带线电路图
基于给定的S11参数的表达式综合出其对应的微带电路图,注意此处的S11参数表达式需要是解析形式(即要是函数表达式的形式)

6、电路综合-基于简化实频的SRFT微带线切比雪夫低通滤波器设计
基于切比雪夫函数进行电路综合,基于目标参数直接进行电路综合得到其对应的微带电路,给出了对应的理论与操作步骤(附Matlab代码)

7、电路综合-基于简化实频的SRFT微带线巴特沃兹低通滤波器设计
基于巴特沃斯函数进行电路综合,基于目标参数直接进行电路综合得到其对应的微带电路,给出了对应的理论与操作步骤(附Matlab代码)

8、电路综合-基于简化实频的SRFT微带线的带通滤波器设计
基于巴特沃斯与切比雪夫函数进行电路综合,基于目标参数直接进行电路综合得到其对应的带通的微带电路,给出了对应的理论与操作步骤(附Matlab代码)

3、任意幅频响应的微带电路设计步骤

假设我需要设计一个具备如下幅频特性的微带线电路,频率f1为0GHz,在此频率的S21的模值为1;频率f2为1GHz,在此频率的S21的模值为0,并在1-3GHz内都要求S21的模值为0(此特性用于确定微带线的电长度)。

9、电路综合-基于简化实频的任意幅频响应的微带电路设计,网络综合和简化实频理论,硬件工程,射频工程,网络,学习,5G


STEP1:设计目标具体现化,将要设计的目标转化为数组的形式,数组覆盖的频率范围为0-3GHz,此处使用长度为58的数组对此目标进行存储,值得注意的是,此数组越大优化的速度也会越慢:
9、电路综合-基于简化实频的任意幅频响应的微带电路设计,网络综合和简化实频理论,硬件工程,射频工程,网络,学习,5G

9、电路综合-基于简化实频的任意幅频响应的微带电路设计,网络综合和简化实频理论,硬件工程,射频工程,网络,学习,5G


STEP2:确定实现此结构所需的电路结构,其主要需要确定的是实现此幅频响应的阶数n,通过前面几个教程的学习,我们知道基于电路的结构可以直接确定F(lamda),只需要确定H(lamda)的系数就可以进行电路综合了。

意思就是,我们需要得到符合如上幅频响应的H(lamda)的系数,就可以使用SRFT进行电路综合了,这一步需要使用最优化算法来进行系数的求解。定义的误差函数如下(简单来说就是实际值减去目标值,最优化的目标是使最终误差极小为0):
9、电路综合-基于简化实频的任意幅频响应的微带电路设计,网络综合和简化实频理论,硬件工程,射频工程,网络,学习,5G
在MATLAB中,可以使用lsqnonlin完成此优化过程,其使用教程如非线性最小二乘求解器


STEP3:在一定次数的迭代求解后,可以得到其对应的一组解,此解就是h的系数,由此进行电路综合。具体综合过程可以参考之前的教程。

4、Matlab编程实现

clear
clc

% 使用1GHZ的微带线,最高控制到3GHz
f=1;
fe=3;
we=2*pi*fe;
tau=pi/2/we;
ele_l=360*tau*f;
%使用6个级联微带线进行设计
k=6;
%在DC处无零点
q=0;
%初始化H的系数
h=[1 1 1 1 1 1 1];


disp(['此处使用在',num2str(f/1e9),'GHz下电长度为',num2str(ele_l),'°的微带线进行实现']);


%0-3GHz的点数
Nopt=57;
fr_opt=linspace(0,3,Nopt+1);
% 定义S21参数的模值
mag=[1,0.952631578947368,0.905263157894737,0.857894736842105,0.810526315789474,0.763157894736842,0.715789473684211...
    ,0.668421052631579,0.621052631578947,0.573684210526316,0.526315789473684,0.478947368421053,0.431578947368421...
    ,0.384210526315789,0.336842105263158,0.289473684210526,0.242105263157895,0.194736842105263,0.147368421052631...
    ,0.100000000000000,0.0100000000000000,0.0100000000000000,0.0100000000000000,0.0100000000000000,0.0100000000000000...
    ,0.0100000000000000,0.0100000000000000,0.0100000000000000,0.0100000000000000,0.0100000000000000,0.0100000000000000...
    ,0.0100000000000000,0.0100000000000000,0.0100000000000000,0.0100000000000000,0.0100000000000000,0.0100000000000000...
    ,0.0100000000000000,0.0100000000000000,0.0100000000000000,0.0100000000000000,0.0100000000000000,0.0100000000000000...
    ,0.0100000000000000,0.0100000000000000,0.0100000000000000,0.0100000000000000,0.0100000000000000,0.0100000000000000...
    ,0.0100000000000000,0.0100000000000000,0.0100000000000000,0.0100000000000000,0.0100000000000000,0.0100000000000000...
    ,0.0100000000000000,0.0100000000000000,0.0100000000000000];
% 定义相位,此处只设计幅值,相位随意了
phase=linspace(0,0,Nopt+1);
% 画出目标电路的幅度
figure (1)
plot(fr_opt,mag)
xlabel('Frequency')
ylabel('MAG-S21')
title('要设计的微带线的目标S21参数')


% 运行优化算法
n1=length(h);
n=n1-1;
h(n+1)=0;
for i=1:n
    x0(i)=h(i);
end
% Call optimization with no transformer
OPTIONS=optimset('MaxFunEvals',20000,'MaxIter',50000);
x=lsqnonlin('objective',x0,[],[],OPTIONS,fe,q,k,fr_opt,mag, phase);
h(n+1)=0;
for i=1:n
    h(i)=x(i);
end

% 基于优化得到的h计算其他参数
[G,H,F,g]=SRFT_htoG(h,q,k);
tau=1/4/fe;
N=length(mag);
j=sqrt(-1);

% 将得到的解析形式画图
for i=1:N
    teta=2*pi*tau*fr_opt(i);
    omega=tan(teta);
    lmbda=j*tan(teta);
    fval=(-1)^q*(lmbda)^q*(1-lmbda^2)^(k/2);
    freal=real(fval);
    fimag=imag(fval);
    gval=polyval(g,lmbda);
    greal=real(gval);
    gimag=imag(gval);
    S21=fval/gval;
    MS21(i)=abs(S21);
    phase_f=atan(fimag/freal);
    phase_g=atan(gimag/greal);
    phase_S21(i)=phase_f-phase_g;
    ph(i)=teta;
    fr(i)=fr_opt(i);
end
figure(2)
plot(fr,MS21, fr_opt,mag)
xlabel('Frequency')
ylabel('MS21, modula')
title('Arbitraray amplitude approximation via SRFT')
%------------------------------------
% 综合得到所需的微带电路
[Z_imp]=UE_sentez(h,g)

运行结果,图中是理想与实际的对比:
9、电路综合-基于简化实频的任意幅频响应的微带电路设计,网络综合和简化实频理论,硬件工程,射频工程,网络,学习,5G

5、ADS验证

电路图构建:
9、电路综合-基于简化实频的任意幅频响应的微带电路设计,网络综合和简化实频理论,硬件工程,射频工程,网络,学习,5G
仿真结果如下,可见和设计目标基本一致:
9、电路综合-基于简化实频的任意幅频响应的微带电路设计,网络综合和简化实频理论,硬件工程,射频工程,网络,学习,5G文章来源地址https://www.toymoban.com/news/detail-715053.html

到了这里,关于9、电路综合-基于简化实频的任意幅频响应的微带电路设计的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 任意分频器电路设计

    目录 任意分频器电路设计 1、任意偶数分频器电路设计 1.2、实验任务 1.3、程序设计 1.3.1、代码如下: 1.3.2、编写仿真 TB 文件 2、任意奇数分频器电路设计 2.1、实验任务 2.2、程序设计 2.2.1、奇数分频电路代码 2.2.2、编写仿真 TB 文件 2.2.3、仿真验证        偶数分频实现比较

    2024年02月16日
    浏览(33)
  • 数字电路13-任意进制计数器设计

    因为市面上的进制计数器的种类优先,所以需要特定进制时,只能自己在已有产品的基础上构成需要的特定进制。 十进制计数器也是通过4位二进制计数器,去掉多余状态所得 根据十进制计数器,可得M进制计数器的特点,即状态数、脉冲数、末状态 如前面的十进制计数器,

    2024年02月07日
    浏览(55)
  • 任意进制加法计数器电路设计

    目录 一、题目 二、时钟发生电路 1、施密特触发电路 2、单稳态电路 3、多谐振荡电路 三、 N进制计数器 1、M的情形 2、MN的情形 2、1  193实现 2、2 192实现 四、设计的小bug 1、两个bug 2、bug的原因及解决 五、仿真源文件的获取 图一 题目要求         如题,我们要设计三部

    2024年02月09日
    浏览(47)
  • CVE-2023-3836:大华智慧园区综合管理平台任意文件上传漏洞复现

    免责声明:请勿利用文章内的相关技术从事非法测试,由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失,均由使用者本人负责,所产生的一切不良后果与文章作者无关。该文章仅供学习用途使用!!! 大华智慧园区

    2024年02月09日
    浏览(45)
  • 11、电路综合-集总参数电路结构的S参数模型计算与Matlab

    电路综合专栏的大纲如下: 网络综合和简化实频理论学习概述 前面介绍了许多微带线电路综合的实际案例,如: 3、电路综合原理与实践—单双端口理想微带线(伪)手算S参数与时域波形 介绍了微带线电路的频域与时域的分析方法,即基于电路结构之间分析得到电路的S参数

    2024年02月06日
    浏览(32)
  • 南京邮电大学电工电子(数电)实验报告——数字电路与模拟电路的综合应用

    1、了解D/A转换器的基本工作原理和基本结构 2、了解大规模集成D/A转换器的功能及其典型应用方法 3、掌握综合性电路的调测方法 实验内容∶设计一个可编程波形发生器技术指标∶ ① 输出信号波形受K2和K1控制 开关K2K1=01时,输出信号波形为正斜率锯齿波。开关K2K1=10时,输出

    2024年02月06日
    浏览(55)
  • 数字电路EDA综合设计verilog笔记(持续更新)

    目录 1、常用组合电路模块的设计 1、基本门电路(常用3种描述方法) 2、译码器与编码器 (1)译码器(decoder) (2)编码器(encoder) 2、常用时序电路模块的设计 1、D触发器 2、数据锁存器 3、实用电路设计 1、基本门电路 2、译码器与编码器 3、数据选择器 4、奇偶校验产生器

    2024年02月09日
    浏览(46)
  • 5.4 单管放大电路的频率响应

    考虑到耦合电容和结电容的影响,图5.4.1(a)所示电路的等效电路如图(b)所示。 在分析放大电路的频率响应时,为了方便起见,一般将输入信号的频率范围分为中频、低频和高频三个频段。在中频段,极间电容因容抗很大而视为开路,耦合电容(或旁路电容)因容抗很小而视为

    2024年02月10日
    浏览(41)
  • 电工技术(6)—RC电路的响应

    公式一定要记住,公式一定要记住,公式一定要记住,重要的事情敲三遍。 零输入响应: 电源激励,输入信号为零,仅由电容元件的初始储能所产生的电路的响应。 实质:RC电路的放电过程 零输入响应电容电压的变化规律: U为初始值 零输入响应电流及电阻电压的变化规律 时

    2024年02月10日
    浏览(36)
  • 2、电路综合原理与实践---正实函数与策动电阻抗函数

    需要先了解有一个拉普拉斯变换。其公式如下所示: 拉普拉斯变换公式能够将时域信号变换到频域,自然而然,它可以将电压、电流的时域波形变换到频域。即: v(t) - V(s) i(t) - I(s) 然后就可以得到策动点阻抗的表达式(p和s代表的是一个东西,简单来说就是电压除以电

    2024年02月07日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包